京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谷歌教你学 AI-第六讲深度神经网络
Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。今天让我们来看到第六讲深度神经网络。
观看更多国外公开课,点击"阅读原文"
回顾之前内容:
谷歌教你学 AI -第一讲机器学习是什么?
谷歌教你学 AI -第二讲机器学习的7个步骤
谷歌教你学 AI -第三讲简单易懂的估算器
谷歌教你学 AI -第四讲部署预测模型
谷歌教你学 AI -第五讲模型可视化
本期视频如下:
AI Adventures--第六讲深度神经网络
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
在本期的AI Adventures中,我们将学习如何将线性模型转换为深度神经网络,从而训练越来越复杂的数据集。
随着线性模型中特征列的数量增加,在训练实现高正确率变得越来越难,因为不同列之间的交互越来越复杂。 这是一个已众所周知的问题,对于数据科学家来说,特别有效的解决方案是使用深度神经网络。
为什么要用深度神经网络
深度神经网络能够适应更复杂的数据集,更好地推广到新数据中。由于有许多层,因此被称为”深”。 这些层能让它们比线性模型,更能适应复杂的数据集。
然而值得权衡的是,若用到深度神经网络,模型则需要更长的训练时间,规模也更大,解释性更低。 那么为什么要用呢?
因为这会带来更高的正确性。
深度学习一个棘手的方面是:要让所有参数“恰到好处”。
根据数据集,这些配置看几乎是无限制的。 但是,TensorFlow内置的Deep Classifier和Regressor提供了一些合理的默认值,你可以立即开始使用,从而快速轻松地进行操作。
从线性到深度
我们来看一个例子,如何将鸢尾花的例子从线性模型更新到深度神经网络(通常缩写为DNN)。
我不打算展示DNN处理的2000列模型…因此我只打算使用我们之前用到的4列模型。当中的机制都是一样的。
主要的变化来自于用DNN分类器替换线性分类器。 这将为我们创建一个深度神经网络。
其他变化
其他的内容几乎都保持不变!深度神经网络还需要一个额外的参数,这是之前我们没有涉及的。
由于深层神经网络有多个层,每层有不同数量的节点,我们将添加一个`hidden_units`参数。
`hidden_units`能够让你为每个图层提供有具有节点数量的数组。这能让你在创建神经网络时,只需考虑它的大小和形状,而不是从头考虑方方面面。添加或删除层就像在数组中添加或删除元素一样简单!
更多的选择
当然,对于任何预先构建的系统,这确实很方便,但是往往缺乏可定制性。 DNN分类器通过让你选择许多其他参数来解决这个问题。有些合理的默认值会被使用 。 例如,优化器,激活函数和退出率都等都可以自定义。
将模型从线性转换为深度,还需要做些什么?
没了!
这就是使用估算器框架的美妙之处。这是整理数据、训练、评估和模型导出的一种常见方式,同时还可以灵活地尝试不同的模型和参数。
深度神经网络,让问题更简单
有时,深度神经网络效果要优于线性模型。在这种情况下,通过使用估算器框架替换一个函数,TensorFlow可以轻松地从线性模型切换到深度模型,而只需要更改少数的代码。
这意味着你能够用更多的时间来处理数据、模型和参数,而不是反复进行训练循环。对于简单的深度神经网络问题,快使用TensorFlow估算器吧!
下期预告
当训练数据太大,我们的机器无法承载;或者训练模型需要好几个小时,那么是时候考虑其他的选择了。下一期我们将降到在云端训练大数据模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27