
大数据的颠覆性 已渗入边缘行业
在银河帝国系列科幻小说中,数学家哈里·谢顿开创了“心理史学”,他能够运用数学公式准确预测人类的未来,作者艾萨克·阿西莫夫凭借其丰富的想象力被全球读者誉为“神一样的人”。如今,小说里预知未来的桥段在某种程度上已经实现,不过不是凭借“心理史学”,而是归功于“大数据”。
大数据是近几年的热词,但从根源上讲其方法论不过是传统的统计学。只是
在银河帝国系列科幻小说中,数学家哈里·谢顿开创了“心理史学”,他能够运用数学公式准确预测人类的未来,作者艾萨克·阿西莫夫凭借其丰富的想象力被全球读者誉为“神一样的人”。如今,小说里预知未来的桥段在某种程度上已经实现,不过不是凭借“心理史学”,而是归功于“大数据”。
大数据是近几年的热词,但从根源上讲其方法论不过是传统的统计学。只是随着人类的信息被数字化,数据越来越多,再加上存储与计算能力逐步提高,此时把统计学和庞大的数据融合在一起便对很多产业产生了颠覆效果。
中国社科院经济与政治研究所副所长何帆就是个大数据的推崇者,他相信大数据可以实现很多闻所未闻的事情。比如,社科院可以通过一个人的信用卡消费记录预测这个人在5年内的离婚概率。
不过,何帆并不认同阿西莫夫的观点,他认为未来的变化是无法预测的,在大数据时代,真正能预测的是个人的行为。“计算机比我们了解自己,可以预知每个人未来会做出怎样的决策。这正是商界为大数据疯狂的原因,准确预测消费者行为将带来全新的发展机遇。”
如今,大数据已经被应用在金融、科技和零售等热门领域,但据何帆介绍,其实很多看似被大数据边缘化的传统行业更早接受了大数据的挑战与变革。
品酒界:预测世纪最佳葡萄酒
品酒界是最早受到大数据影响的行业之一。
传统的品酒是由专业的品酒大师完成,这些人通常天赋异禀,嗅觉与味觉超常,而且后天训练有素。但这一垄断局面后来被普林斯顿大学的一位英语学教授打破了。这位教授尝试用统计分析的方法替代传统的物理品酒法,他收集了降雨量、平均气温、土壤成分等影响葡萄酒品质的各类数据,并根据历年葡萄酒的品质挖掘其中的联系。凭此方法,他成功预测了世纪最佳葡萄酒。
“这就是大数据思维,现在传统的品酒师不敢轻易对葡萄酒的品质做判断了,都要先查看大数据的预测再下结论。”何帆说。
体育界:挑选潜在运动之星
不仅是选酒,选人的决策同样受到大数据的影响。
电影《点球成金》真实反映了大数据对固有的运动员挑选规则的挑战。在电影中,比利·比恩研究出一套“棒球统计学”,对球员的防御率、胜投数、打击率、长打率、全垒打数、打点数等几十类数据进行统计与分析,借此预测球员的潜能。与固有的根据经验对球员进行主观判断相比,数据统计的方式更加精确与可靠,从而打破常规发现了潜在棒球之星。
在现实的体育界,大数据已经应用在各项运动中。2013年年末,美国NBA开始在所有球场中安装体感追踪技术,记录并追踪篮球和球员的运动。这一系统将提供持续的数据流和全面的统计数据,包括速度、距离、球员之间间隔以及控球情况等,以实现目标性更强的分析。
在大数据面前,几乎每一个球员都面临优势与局限被暴露无遗的状况。比如,通过统计姚明在篮下接球、运球失误的次数比得知,姚明右手接球时通常能运球三次,左手接球则只能运球两次。这样的规律就告诉防守人,要想解除姚明对篮下的威胁,就要把他限制在远离篮筐的区域,让他必须运球三次以上才来到篮下,这样往往就会失误。
博彩业:远离顾客忍无可忍的输钱底线
在很多高级赌场,顾客进门时需要办理一张电子磁卡,在登记性别、年龄、民族、职业等基本信息时,他们便开始置于大数据的监测之下。根据顾客的数据信息,系统会立刻将其与数据库中的样本进行匹配,推断出顾客的最大消费能力、消费时间极限等行为特点。
“每个人无论多有钱,都有一个痛苦点,当输的钱超过一定数目,很可能再也不踏进这个赌场一步。而大数据带给传统赌场的是一个最好的选择——通过预测顾客的痛苦点,在那之前让他们住手。”
何帆举例说,如果一个35岁的中国男性土豪走进了赌场,大数据会预测到这个人的痛苦点大概是1万美金,通过CCTV和各桌的监控,当他输到9800美元的时候,便会有年轻貌美的公关经理主动上前攀谈,缓和他的情绪,引导其到餐饮、休闲等其他区域消费。而保留顾客的最后一点耐心和希望,也会促成他们的再次消费。
在何帆看来,消费者在享受精准服务时,自己已经在大数据的监控下了,大数据不仅可以帮助商家榨干消费者当下可以消费的最后一分钱,还能保留再次压榨他们的可能。
医学界:预防在疾病发生之前
医学领域很早就应用了大数据思维。在细菌被发现之前,一位医生意识到如果从停尸房回来后做接生手术,死亡率就会很高。他认定这之间存在某种联系,于是建议大家用肥皂洗手后再手术。尽管当时并没有人理解洗手与死亡率下降相关的原因,但人们还是通过信息发现了其中的联系。
“知其然,不知其所以然,这正是大数据的规律,”何帆说,“美剧《豪斯医生》的医学顾问就是一名行政医学的代表人物,相比于传统的病理学问诊方法,行政医学强调的是病症,而不是病因,这就是用大数据说话。”
在欧美医学界,大数据的思维被很好地延续了下来。创立于1863年的美国梅奥医院(Mayo Clinic)在为患者诊病时,除了凭借医生的技术和经验,还要依靠医院150年积累的临床统计与实践经验的大数据。
据介绍,如果把梅奥数据库中头疼这一单独症状可能引发的疾病以5号字打印出来,能铺满一个400多平米的房间,基本不会遗漏任何一种可能的疾病。这不仅可以帮助医生判断病人当下的健康状况,还可以预测潜在病痛的发生趋势,从而提出有针对性的保健方案。
影视圈:内容由观众决定
从导演想拍什么到观众想看什么,影视界在不断抬高观众的地位,以此获得较高的市场回报,而此时大数据成了判断观众兴趣的绝佳途径。以喜好最难琢磨的幼童观众为例,传统的沟通方式完全无法进行,制作方只能凭借经验与推测进行创作,但大数据的出现让幼童心理活动的获知成为可能。
“美国最早采用大数据制作的儿童节目是《芝麻街》,制作方每制作一个新的动画片段都会让大量的小朋友试看,同时在屏幕旁随机出现一些卡通图案。虽然无法与幼童沟通,但当小孩总是分神去看屏幕旁的卡通图案时,制作方就认为这段卡通式孩子没有看懂、或不吸引人的。制作方于是将这些数据统计起来,分析对比后对影片加以修改。”何帆表示,这就是最基本的大数据对影视制作的影响。
此外,这几年流行的《天线宝宝》也得益于大数据的应用。尽管在成人眼中,每句话、每个动作重复3遍是近乎弱智的表现形式,但就是这个卡通片让全世界的小孩子看得目不转睛。通过大数据的研究发现,在儿童的心理世界,重复是学习和娱乐的主要认知规律,而三遍恰到好处,《天线宝宝》正是大胆使用了这一结论,从而成功打造出一部打破常规的儿童卡通片。
还有更多的传统行业正在无形间被大数据颠覆,对于这些大数据应用的非主流领域,其带来的冲击或许更强烈,逼迫从业者进行产业变革与创新。当然,这也致使某些难以接受统计逻辑与思维的从业者面临失业的风险。
另一方面,何帆认为,行业在享受大数据变革的同时,消费者的隐私正变得无处可藏。大数据的源头正是普通的消费者,购物记录、乘车记录、投资记录、甚至是生理记录,每个人的生活都在被数据化,都在某些人的监测之中。
“被大数据改变的行业越多,人们要让渡的隐私越多,这正是大数据在未来要面对的其中一个危机。”何帆说。
中国社科院经济与政治研究所副所长何帆就是个大数据的推崇者,他相信大数据可以实现很多闻所未闻的事情。比如,社科院可以通过一个人的信用卡消费记录预测这个人在5年内的离婚概率。
不过,何帆并不认同阿西莫夫的观点,他认为未来的变化是无法预测的,在大数据时代,真正能预测的是个人的行为。“计算机比我们了解自己,可以预知每个人未来会做出怎样的决策。这正是商界为大数据疯狂的原因,准确预测消费者行为将带来全新的发展机遇。”
如今,大数据已经被应用在金融、科技和零售等热门领域,但据何帆介绍,其实很多看似被大数据边缘化的传统行业更早接受了大数据的挑战与变革。
品酒界:预测世纪最佳葡萄酒
品酒界是最早受到大数据影响的行业之一。
传统的品酒是由专业的品酒大师完成,这些人通常天赋异禀,嗅觉与味觉超常,而且后天训练有素。但这一垄断局面后来被普林斯顿大学的一位英语学教授打破了。这位教授尝试用统计分析的方法替代传统的物理品酒法,他收集了降雨量、平均气温、土壤成分等影响葡萄酒品质的各类数据,并根据历年葡萄酒的品质挖掘其中的联系。凭此方法,他成功预测了世纪最佳葡萄酒。
“这就是大数据思维,现在传统的品酒师不敢轻易对葡萄酒的品质做判断了,都要先查看大数据的预测再下结论。”何帆说。
体育界:挑选潜在运动之星
不仅是选酒,选人的决策同样受到大数据的影响。
电影《点球成金》真实反映了大数据对固有的运动员挑选规则的挑战。在电影中,比利·比恩研究出一套“棒球统计学”,对球员的防御率、胜投数、打击率、长打率、全垒打数、打点数等几十类数据进行统计与分析,借此预测球员的潜能。与固有的根据经验对球员进行主观判断相比,数据统计的方式更加精确与可靠,从而打破常规发现了潜在棒球之星。
在现实的体育界,大数据已经应用在各项运动中。2013年年末,美国NBA开始在所有球场中安装体感追踪技术,记录并追踪篮球和球员的运动。这一系统将提供持续的数据流和全面的统计数据,包括速度、距离、球员之间间隔以及控球情况等,以实现目标性更强的分析。
在大数据面前,几乎每一个球员都面临优势与局限被暴露无遗的状况。比如,通过统计姚明在篮下接球、运球失误的次数比得知,姚明右手接球时通常能运球三次,左手接球则只能运球两次。这样的规律就告诉防守人,要想解除姚明对篮下的威胁,就要把他限制在远离篮筐的区域,让他必须运球三次以上才来到篮下,这样往往就会失误。
博彩业:远离顾客忍无可忍的输钱底线
在很多高级赌场,顾客进门时需要办理一张电子磁卡,在登记性别、年龄、民族、职业等基本信息时,他们便开始置于大数据的监测之下。根据顾客的数据信息,系统会立刻将其与数据库中的样本进行匹配,推断出顾客的最大消费能力、消费时间极限等行为特点。
“每个人无论多有钱,都有一个痛苦点,当输的钱超过一定数目,很可能再也不踏进这个赌场一步。而大数据带给传统赌场的是一个最好的选择——通过预测顾客的痛苦点,在那之前让他们住手。”
何帆举例说,如果一个35岁的中国男性土豪走进了赌场,大数据会预测到这个人的痛苦点大概是1万美金,通过CCTV和各桌的监控,当他输到9800美元的时候,便会有年轻貌美的公关经理主动上前攀谈,缓和他的情绪,引导其到餐饮、休闲等其他区域消费。而保留顾客的最后一点耐心和希望,也会促成他们的再次消费。
在何帆看来,消费者在享受精准服务时,自己已经在大数据的监控下了,大数据不仅可以帮助商家榨干消费者当下可以消费的最后一分钱,还能保留再次压榨他们的可能。
医学界:预防在疾病发生之前
医学领域很早就应用了大数据思维。在细菌被发现之前,一位医生意识到如果从停尸房回来后做接生手术,死亡率就会很高。他认定这之间存在某种联系,于是建议大家用肥皂洗手后再手术。尽管当时并没有人理解洗手与死亡率下降相关的原因,但人们还是通过信息发现了其中的联系。
“知其然,不知其所以然,这正是大数据的规律,”何帆说,“美剧《豪斯医生》的医学顾问就是一名行政医学的代表人物,相比于传统的病理学问诊方法,行政医学强调的是病症,而不是病因,这就是用大数据说话。”
在欧美医学界,大数据的思维被很好地延续了下来。创立于1863年的美国梅奥医院(Mayo Clinic)在为患者诊病时,除了凭借医生的技术和经验,还要依靠医院150年积累的临床统计与实践经验的大数据。
据介绍,如果把梅奥数据库中头疼这一单独症状可能引发的疾病以5号字打印出来,能铺满一个400多平米的房间,基本不会遗漏任何一种可能的疾病。这不仅可以帮助医生判断病人当下的健康状况,还可以预测潜在病痛的发生趋势,从而提出有针对性的保健方案。
影视圈:内容由观众决定
从导演想拍什么到观众想看什么,影视界在不断抬高观众的地位,以此获得较高的市场回报,而此时大数据成了判断观众兴趣的绝佳途径。以喜好最难琢磨的幼童观众为例,传统的沟通方式完全无法进行,制作方只能凭借经验与推测进行创作,但大数据的出现让幼童心理活动的获知成为可能。
“美国最早采用大数据制作的儿童节目是《芝麻街》,制作方每制作一个新的动画片段都会让大量的小朋友试看,同时在屏幕旁随机出现一些卡通图案。虽然无法与幼童沟通,但当小孩总是分神去看屏幕旁的卡通图案时,制作方就认为这段卡通式孩子没有看懂、或不吸引人的。制作方于是将这些数据统计起来,分析对比后对影片加以修改。”何帆表示,这就是最基本的大数据对影视制作的影响。
此外,这几年流行的《天线宝宝》也得益于大数据的应用。尽管在成人眼中,每句话、每个动作重复3遍是近乎弱智的表现形式,但就是这个卡通片让全世界的小孩子看得目不转睛。通过大数据的研究发现,在儿童的心理世界,重复是学习和娱乐的主要认知规律,而三遍恰到好处,《天线宝宝》正是大胆使用了这一结论,从而成功打造出一部打破常规的儿童卡通片。
还有更多的传统行业正在无形间被大数据颠覆,对于这些大数据应用的非主流领域,其带来的冲击或许更强烈,逼迫从业者进行产业变革与创新。当然,这也致使某些难以接受统计逻辑与思维的从业者面临失业的风险。
另一方面,何帆认为,行业在享受大数据变革的同时,消费者的隐私正变得无处可藏。大数据的源头正是普通的消费者,购物记录、乘车记录、投资记录、甚至是生理记录,每个人的生活都在被数据化,都在某些人的监测之中。
“被大数据改变的行业越多,人们要让渡的隐私越多,这正是大数据在未来要面对的其中一个危机。”何帆说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15