京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据帮助企业精确地寻找潜在客户
最近看到一则海外的新闻,一家人在收到一贯准确投递到家中的商业促销信函时,看到其中一封的促销产品函中标注着“该名客户亲人近期在车祸中丧生”的信息。
如果家人全部健康平安,收到这么一封少许带有点诅咒内容的信件,我们顶多会心里骂几句这家不靠谱的公司而已,但是,恰恰相反,这家公司的大数据收集能力和备注能力都极其出色,信中关于收件人家庭的信息非常准确!(听着真有点像现实中的惊悚片)。
一直被商家寄予厚望的大数据,终于以一种夸张的方式获取了娱乐媒体的关注!(要知道,过去,大数据从来都只有枯燥的IT业界才舍得关注)
关于大数据的定义以及对人类的意义,我就不赘述了,反正有无数的专家会前仆后继地去解释,简单的聊下这个事件中商家可能运用大数据的线路图:
这里面浮现出了大数据应用于商业企业获取客户的基本供应链:
A公司是需要潜在客户信息的企业;
B公司是信息经纪公司或数据收集分析公司,负责收集整理筛选潜在客户信息提供给需要的企业,这些数据帮助企业促销推广产品获得客户时使用;
C公司有可能是一家连锁超市或者能够接触到最终客户的企业,它的数据库有着大量的一手客户详细信息;
D是被像小白鼠一般准确分析的客户(当然,在隐私充分保护的情况下,大数据其实反而减少了我们被垃圾广告骚扰的次数,因为它所导致的销售行为更精准更符合我们的个性化需 求)。
上述的故事脉络基本就是:B从C处获得了客户信息,筛选出满足A需要的信息,并根据A的产品内容针对特定客户寄发信函给D。一个很完美的流程,但是在这个过程中,可能就是人
为操作的疏忽,客服代表不小心把原本后台隐藏的客户背景信息放入了信函中(估计是多次枯燥的拷贝粘贴中出现的失误),结果出现了这尴尬的一幕。
现有的大数据收集可以分为被动数据和主动数据,也许我这样的划分很不科学严谨,会让很多专家愤怒,但是,我已经习惯了把复杂的东西简单化通俗化,就原谅我一次吧。
被动数据
比如我们在搜索引擎中每一次搜索的记录、在电子商城中每一次的商品浏览和购买记录、每一次电子支付的数据…这些看似不相干的庞杂数据,汇总在一起,经过分析提炼,一般 即可描绘出你这个人的行为习惯概况,并对你未来可能采取的行为做出概率相当高的预测(最早的大数据大师应该是福尔摩斯,和他相比,现在很多自称大数据专家的,则只能成为 雷斯垂德警探)。
主动数据
主要依靠人为收集、筛选、生成。
制度健全的大公司的优秀员工,都会在入职时被培训出像鼹鼠一样的嗅觉,在他们边和客户交谈时,边竖起耳朵细心倾听客户透露的信息,事后再整理进公司的客户资源管理系统。
在正常的如姓名、性别、公司信息、职位等客户个人信息之外,还有一个非常重要的备注栏,那里面充斥着关于客户的八卦:出过的书籍、家庭成员状况、爱旅游还是爱宠物…这
些信息都是销售或客服在日常与客户的接触中交谈沟通得来,当然,这样做的目的我们通常会认为是以后可以更好的服务客户。
利用大数据技术,不管是被动数据,还是主动数据,将这些无头绪的信息编织在一起,经过分析筛查,就能够精确地指向潜在客户。
这也是它被商业专家们寄予厚望的所在。但这一次的事件给了我们一个小小的提醒,如何防范无心的隐私冒犯?哪怕是打着精准营销的旗帜,这样的失误都让我们难以承受,更不要说故意的隐私侵犯了。
从海外的信用卡客户隐私数据泄露,到近期国内的开房数据曝光,数据越来越大,担忧似乎越来越多。在电子化时代,所有跟我们个人信息相关的数据几乎都流淌在网络中,未来, 也许一个节点的数据泄露,就是你个人甚至你周边人的整个人生的信息曝光…
也许有一天你的女朋友会收到你为她精心准备的,并且从网上商城订购的生日礼物,同时可能在随礼物寄来的包裹里有着打印好的固定格式的感谢购买函,以及系统不小心出错打印
上的“(根据以往购买记录,该名客户有86%的可能会喜欢黑丝镂花,并且花费预计不会超过80元,他的女友不喜欢的概率可能为43%…)”。
当然,这种建立在对客户过往交易数据分析上的“温馨的”隐私判断通常不会出现,即使出现,也会出现在括号内。
当然,大数据还是带给了我们一些便利, 商家不用偷窥,也能知道你有什么癖好,以及如何精准的满足你这种癖好…
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26