
大数据帮助企业精确地寻找潜在客户
最近看到一则海外的新闻,一家人在收到一贯准确投递到家中的商业促销信函时,看到其中一封的促销产品函中标注着“该名客户亲人近期在车祸中丧生”的信息。
如果家人全部健康平安,收到这么一封少许带有点诅咒内容的信件,我们顶多会心里骂几句这家不靠谱的公司而已,但是,恰恰相反,这家公司的大数据收集能力和备注能力都极其出色,信中关于收件人家庭的信息非常准确!(听着真有点像现实中的惊悚片)。
一直被商家寄予厚望的大数据,终于以一种夸张的方式获取了娱乐媒体的关注!(要知道,过去,大数据从来都只有枯燥的IT业界才舍得关注)
关于大数据的定义以及对人类的意义,我就不赘述了,反正有无数的专家会前仆后继地去解释,简单的聊下这个事件中商家可能运用大数据的线路图:
这里面浮现出了大数据应用于商业企业获取客户的基本供应链:
A公司是需要潜在客户信息的企业;
B公司是信息经纪公司或数据收集分析公司,负责收集整理筛选潜在客户信息提供给需要的企业,这些数据帮助企业促销推广产品获得客户时使用;
C公司有可能是一家连锁超市或者能够接触到最终客户的企业,它的数据库有着大量的一手客户详细信息;
D是被像小白鼠一般准确分析的客户(当然,在隐私充分保护的情况下,大数据其实反而减少了我们被垃圾广告骚扰的次数,因为它所导致的销售行为更精准更符合我们的个性化需 求)。
上述的故事脉络基本就是:B从C处获得了客户信息,筛选出满足A需要的信息,并根据A的产品内容针对特定客户寄发信函给D。一个很完美的流程,但是在这个过程中,可能就是人
为操作的疏忽,客服代表不小心把原本后台隐藏的客户背景信息放入了信函中(估计是多次枯燥的拷贝粘贴中出现的失误),结果出现了这尴尬的一幕。
现有的大数据收集可以分为被动数据和主动数据,也许我这样的划分很不科学严谨,会让很多专家愤怒,但是,我已经习惯了把复杂的东西简单化通俗化,就原谅我一次吧。
被动数据
比如我们在搜索引擎中每一次搜索的记录、在电子商城中每一次的商品浏览和购买记录、每一次电子支付的数据…这些看似不相干的庞杂数据,汇总在一起,经过分析提炼,一般 即可描绘出你这个人的行为习惯概况,并对你未来可能采取的行为做出概率相当高的预测(最早的大数据大师应该是福尔摩斯,和他相比,现在很多自称大数据专家的,则只能成为 雷斯垂德警探)。
主动数据
主要依靠人为收集、筛选、生成。
制度健全的大公司的优秀员工,都会在入职时被培训出像鼹鼠一样的嗅觉,在他们边和客户交谈时,边竖起耳朵细心倾听客户透露的信息,事后再整理进公司的客户资源管理系统。
在正常的如姓名、性别、公司信息、职位等客户个人信息之外,还有一个非常重要的备注栏,那里面充斥着关于客户的八卦:出过的书籍、家庭成员状况、爱旅游还是爱宠物…这
些信息都是销售或客服在日常与客户的接触中交谈沟通得来,当然,这样做的目的我们通常会认为是以后可以更好的服务客户。
利用大数据技术,不管是被动数据,还是主动数据,将这些无头绪的信息编织在一起,经过分析筛查,就能够精确地指向潜在客户。
这也是它被商业专家们寄予厚望的所在。但这一次的事件给了我们一个小小的提醒,如何防范无心的隐私冒犯?哪怕是打着精准营销的旗帜,这样的失误都让我们难以承受,更不要说故意的隐私侵犯了。
从海外的信用卡客户隐私数据泄露,到近期国内的开房数据曝光,数据越来越大,担忧似乎越来越多。在电子化时代,所有跟我们个人信息相关的数据几乎都流淌在网络中,未来, 也许一个节点的数据泄露,就是你个人甚至你周边人的整个人生的信息曝光…
也许有一天你的女朋友会收到你为她精心准备的,并且从网上商城订购的生日礼物,同时可能在随礼物寄来的包裹里有着打印好的固定格式的感谢购买函,以及系统不小心出错打印
上的“(根据以往购买记录,该名客户有86%的可能会喜欢黑丝镂花,并且花费预计不会超过80元,他的女友不喜欢的概率可能为43%…)”。
当然,这种建立在对客户过往交易数据分析上的“温馨的”隐私判断通常不会出现,即使出现,也会出现在括号内。
当然,大数据还是带给了我们一些便利, 商家不用偷窥,也能知道你有什么癖好,以及如何精准的满足你这种癖好…
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03