
存储之于大数据分析
目前市场上有两种类型的大数据分析方式--同步的和异步的,两种都有各自在存储容量和特性上的要求。
近来大数据分析这个词正逐渐成为IT界流行的一个术语,以代指有关大数据本身的猜想,通俗说来即成堆数据背后问题的答案。然而,如果我们能够从足够的数据点入手比对及交叉分析,或许能帮助我们找到一些有用的数据,甚至可能帮助避免灾难。
问题是显而易见的,所有的分析都需要大量甚至海量的数据,这便给当今的IT管理人员带来了更新的挑战,即如何捕获、存取、以及分析这些数据并将从中得到的分析用于后续任务的执行?
大数据分析应用通常会使用例如网络流量、金融交易记录以及敏感数据来替代传统形式的内容。数据本身的价值在于数据间的比对、关联或者引用。对大数据的分析通常会意味着与大量的小数据对象打交道,而这些小数据对象往往对响应延时要求非常之高。
当前业界主要有两种大数据分析场景,而它们通常是根据数据处理的形式而区分:
在实时使用场景下,响应效率是最为关键的 ,因此大数据存储架构本身的设计需要满足最小延时的功能。
同步,即实时的或者近乎于实时的;另外一种就是异步的方式,这种方式下,数据首先会被获取,记录下来然后再用批处理进程进行分析。
同步分析
可以想到的近乎于实时的大数据分析的最早的例子就是超级市场里的工作人员是如何统计消费者行为习惯以便于提供相应的优惠促销券的。事实上是,消费者购买行为计算很可能在用户收银前就已经完成,但是概念本身是非常类似的。另外一个相关的例子是在线社交网站可以通过访问用户的行为建立属于他们的行为数据库,这样就可以根据各自不同的消费习惯提供不同的点对点广告植入。
在零售行业,一些大型商铺正开始在停车场对前来购物的消费者使用面部识别技术,这样一旦他们路过或者经过对应的商铺与之相应的促销信息便随之而来。因此,在这样一类的实时大数据分析场景中,速度是第一要素,故而大数据存储架构需要建设成为低延时的场景。
大数据分析逐渐在IT行业成为了一个热门的话题,越来越多的企业相信它将引领企业走向成功。然而任何事情都有两个方面。这件事情上来看,就是现有存储技术本身。传统存储系统不管是在需要极低延时响应、实时大数据应用或者还是面对海量数据仓储的数据挖掘应用的时候都会遇到瓶颈。为了保证大数据分析业务能正常运行,相应的存储系统需要足够快,可扩展并且性价比有优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29