京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据意味着大风险
大数据不仅仅只是大量的数据
从某种意义上说,当一家企业开始收集和存储大量的数据信息时,其就已然成为了一个相当显眼的黑客攻击目标。但更广泛地说,对那些收集了大量有价值的非结构化数据信息的企业而言,其数据信息可能并不存在任何根本性的新威胁。
罗伯特·麦加维引用Brainloop公司全球营销副总裁David Topping的话说:“ 对于黑客攻击而言,那些PB级存储的大数据信息是安全的,因为这些数据的量对于黑客而言根本就太大了。也许除了那些资金雄厚的赞助商之外,一般的黑客都缺乏相关的分析工具来从如此庞大的数据量中提取有意义的信息。换句话说,企业也和这些黑客一样,面临同样严峻而显着的问题:如何从他们所收集的庞大数据中提取有价值的东西出来。因此,对于个别大型数据存储库而言,考虑增加任何超出其它类型数据库的安全性措施并无太大的实施意义,尤其是考虑到这些黑客相对于各大机构的能力往往是有限的。”
环境和细粒度的安全
但仅仅只是因为这些数据是非结构化的或更难进行筛选分析,并不意味着大数据必然是更安全。如果所有的大数据存储库都是有用的,就不能将所有每一条信息都进行同等的维护。正如InfoWorld的安得烈C.奥利弗指出的那样:“您企业所收集的数据越多,保持这些数据细粒度的任务和挑战也就越艰巨。企业如何才能在不牺牲大数据性能的前提下牢牢把握所有这些数据的所有权,并遵守相关的监管规定呢?这促使企业首先需要选择一款大数据解决方案。”
细粒度的数据安全分区对数据访问进行了分类。例如,企业的某部分员工可能只能够访问非财务方面的数据,而较高级的员工则有权访问更多的信息。此外,某些信息可能由另一个部门所拥有,或者对其的使用会被加以限制。我们面临的挑战是如何良好的对一个有组织且安全的系统进行维护,尽管面临着一定的环境困境。因此当企业在面临着在安全和盈利能力之间进行权衡的问题时,他们可以很容易地进行响应:“是的,我们有标准的网络安全,所以我们的数据是安全的。”
大数据不能被匿名化
您企业所受收集的数据越详细,就越是可能涉及到更多的个体私人信息,因此,对于个人隐私和安全问题的关注度也应提高。有CSO指出:“计算机科学家表示他们可以使用不涉及个人可识别信息的数据来重建相关人员的身份数据。例如,如果一家品牌企业或政府机构获得了覆盖某地区一年的客户GPS记录列表,那么,他们可以用该列表来了解一人或多人的身份信息。”在这种情况下,找到一个人的身份信息是非常简单的。例如,在某个时间段根据GPS进行定位,然后从互联网上搜索与该位置有关用户的姓名。一般情况下,这个过程可能会更复杂一点,但从概念上讲,其是一个很容易解决的简单问题。
尽管企业纷纷试图使大数据匿名化,这些企业最好的方法也只是使这些数据“假名化”--让一些信息是假名的,当然仍还是可与一个真实的身份相联系。这一有限制性的匿名化是大数据危险的一部分:黑客和其他恶意方可能无法完成数据的精细分析,但考虑到这些有限信息种类的丰富性,他们可以收集各种可利用的结论,进行欺诈,偷盗或者更糟的行为。
虽然原始数据需要保护,即使其是非结构化大数据存储库的一部分,但大数据所面临的更大的威胁是企业支付了巨大的成本才从大数据分析中获得的有价值的信息。麦加维再次引用 David Topping的话说:“许多企业浪费了太多的预算以保障大数据存储。而他们真正的风险则在相关数据信息的输出方面。由于企业往往很少监视或保护这些数据,围绕着企业分析得出的洞察输出是如何产生的… 大多数安全专家都认为,企业的雇员往往表现得很无辜,但有的的确是大数据被破坏最常见的罪魁祸首。”
企业需要保护大数据,尽管其涉及到某些原始信息,但我们需要将更多的重点放到通过对原始数据分析所获得的洞察见解方面。特别是,这些见解必须至少被视为比原始数据更为重要。
处理大数据的安全问题
接下来的问题便是如何解决这些企业担忧的安全问题。一种方法是为黑客提供一个有吸引力的假目标,以便使得企业能够学习更安全的研究方法来应对攻击,实施保护措施。这一战略或不甚理想,因为其只能当系统已经有一些漏洞时才能发挥作用。但这些弱点是可能被识别和解决的。
引用Forrester公司研究题为《未来的数据安全和隐私报告:关于大数据的控制》IBM指出,“安全专业人士在网络边缘最好进行控制。然而,如果攻击者穿透你的周边,他们将有充分的和不受限制的机会访问你的数据。” 当然,解决方案就在于为数据提供一个安全层,让简单地访问网络还不足以获得如此大的权限。
加密,特别是当处理大数据分析洞察见解时,是保护一种有效的信息保护方式,但其肯定不是一个新概念。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05