京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python实现斐波那契数列的方法示例
斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下递归的方法定义:
F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 。
1. 元组实现
fibs = [0, 1]
for i in range(8):
fibs.append(fibs[-2] + fibs[-1])
这能得到一个在指定范围内的斐波那契数列的列表。
2. 迭代器实现
class Fibs:
def __init__(self):
self.a = 0
self.b = 1
def next(self):
self.a, self.b = self.b, self.a + self.b
return self.a
def __iter__(self):
return self
这将得到一个无穷的数列,可以采用如下方式访问:
fibs = Fibs()
for f in fibs:
if f > 1000:
print f
break
else:
print f
3. 通过定制类实现
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
elif isinstance(n, slice):
start = n.start
stop = n.stop
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L
else:
raise TypeError("Fib indices must be integers")
这样可以得到一个类似于序列的数据结构,可以通过下标来访问数据:
f = Fib()
print f[0:5]
print f[:10]
4.Python实现比较简易的斐波那契数列示例
先放一个斐波那契数列出来瞧瞧…
0 1 1 2 3 5 8 13 21 34 55 89 144 233...
首先给头两个变量赋值:
i, j = 0, 1
当然也可以这样写:
i = 0
j = 1
接着定个范围,就10000之内好了:
while i < 10000:
然后在while语句中输出i并设计逻辑:
print i,
i, j = j, i+j
在这里需要注意:“i, j = i, i+j”这条代码不能写成如下所示:
i = j
j = i+j
如果写成这样,j就不是前两位相加的值,而是已经被j赋过值的i和j相加的值,这样的话输出的数列会如下所示:
0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
正确的整片代码如下所示:
i, j = 0, 1
while i < 10000:
print i,
i, j = j, i+j
最后展示运行结果:
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
总结
以上就是关于利用Python实现斐波那契数列的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27