
脱离互联网与云计算去讲数据是个大误区
做大数据以前,对企业的影响可能还要追溯到互联网对企业的影响。要讲清,让大家理解大数据对企业的理解,有三件事情可能少不了:
一个就是互联网。互联网很热门的词就是云计算,就是大数据。原因非常简单,互联网公司一定是一家数据公司。阿里巴巴在2008年的时候开过一次会,突然发现不是电子商务公司,是数据公司,对公司非常非常大的影响。
第二个事情对企业有非常大的影响,当自己发现是数据公司,突然发现少了一个东西,少了把数据变成财富的东西,靠什么呢?就是靠云计算,必须用最低的成本从数据里面得到价值,才能活下去,所以大家设想一下,如果不能用最低的成本得到价值,是活不下去的,这是最基本的。
第三个明白了事情就是计算一定要变成公共服务,2008年开始,对我们企业来讲,用另外的角度来表达阿里巴巴,我们曾经讲过几句话,不上淘宝的人可能不太有,淘宝对中国社会最大的贡献不是让大家上去买东西,对社会最大的贡献是消费者的习惯在我们自己企业手里。消费者的习惯就是数据,这是倒过来看的。有时马云也会讲,公司是拿数据去卖东西的,阿里巴巴这家公司是卖东西,是为了数据,这是一个最基本的不一样的地方,也是我们慢慢慢慢过来的。
阿里巴巴做的小额贷款的事情,最体现了数据的价值,或者互联网数据,我先不说大数据,互联网数据的价值,过去要说贷款的话,银行最重要的是调查信用,要抵押,就这两个事。调查信用是传统的来看数据的方法,也可以讲这是数据,但是传统的,为什么它?它跟互联网无关。我们怎么用数据来变成一个企业的信用呢?用过去它在我们平台上沉淀下来的数据,不是我们去收集的数据,是沉淀下来的数据,这些数据过去是没有用的,但是因为我们把它变成模型,变成信用以后,就变成这家小企业的财富,才会使我们由300多个员工给70万人做贷款,这是数据的效用跟价值。
倒过来,对我们的组织结构的冲击是很大的,过去用这样的方法做事情,今天会想用另外的方法做事情,对我们的组织结构的冲击也是很大的。
我想表达的意思是什么呢?如果你今天讲数据的话,千万不要觉得大数据是从数据变成大数据的,不是这样的,其实今天实际上是一个把过去从所谓的信息社会变成了数据社会,可能这样讲更好一点。这句话是什么意思呢?过去因为没有互联网,因为没有计算能力,所以你能够得到的数据一定要大家觉得马上很有价值的东西,大家过去称之信息。
今天是因为有了互联网巨大的计算能力以后,今天你是可以得到很多数据,而不追求今天的数据价值,但是它在第二天可以带来更大的价值。从第一天起大家都知道数据,它是从信息到数据的转变,因为有了互联网,有了计算能力,大家可以设想一下第一天会要求拿到的是最有用的信息,但是过了两天发现,今天看起来没有用的东西变成了最有用的东西,谷歌是做的最好的例子,让一个点击,鼠标点一点可以挣几千美金,鼠标这个东西,在微软时代,多少人点鼠标没有人把它变成财富,但是互联网时代把它变成了财富。这是非常典型的例子,只收集信息,今天看来不会变成你的财富了,而去年得到看起来没有价值的东西可以变成财富,这是阿里巴巴自己很重要的理解。
今天我们对数据的理解,尽管有很多消费者喜欢,但是还很粗浅。我曾经跟马总讲的话,对我们自己公司反省,阿里巴巴对数据的理解还是非常原始的,另外一个角度讲,阿里巴巴对数据的理解不会超过苏宁对电子商务的理解。应该尊重苏宁集团,但苏宁对电子商务的理解的确不够。
讲这句话的意思是,大家对这件事情的认识还是很浅,我们对数据很尊敬,只是想表达一下我们在非常原始的状态,在这个行业,今天刚刚开始,严格上讲也没有专家,大家碰到的都是新问题,但是挑战不要低估了,走出两个误区,一个是觉得把过去的数据,过去谈数据,今天再谈大一点,把方法再搬过来。第二,脱离了互联网跟云计算讲数据,也是蛮大的误区。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30