
脱离互联网与云计算去讲数据是个大误区
做大数据以前,对企业的影响可能还要追溯到互联网对企业的影响。要讲清,让大家理解大数据对企业的理解,有三件事情可能少不了:
一个就是互联网。互联网很热门的词就是云计算,就是大数据。原因非常简单,互联网公司一定是一家数据公司。阿里巴巴在2008年的时候开过一次会,突然发现不是电子商务公司,是数据公司,对公司非常非常大的影响。
第二个事情对企业有非常大的影响,当自己发现是数据公司,突然发现少了一个东西,少了把数据变成财富的东西,靠什么呢?就是靠云计算,必须用最低的成本从数据里面得到价值,才能活下去,所以大家设想一下,如果不能用最低的成本得到价值,是活不下去的,这是最基本的。
第三个明白了事情就是计算一定要变成公共服务,2008年开始,对我们企业来讲,用另外的角度来表达阿里巴巴,我们曾经讲过几句话,不上淘宝的人可能不太有,淘宝对中国社会最大的贡献不是让大家上去买东西,对社会最大的贡献是消费者的习惯在我们自己企业手里。消费者的习惯就是数据,这是倒过来看的。有时马云也会讲,公司是拿数据去卖东西的,阿里巴巴这家公司是卖东西,是为了数据,这是一个最基本的不一样的地方,也是我们慢慢慢慢过来的。
阿里巴巴做的小额贷款的事情,最体现了数据的价值,或者互联网数据,我先不说大数据,互联网数据的价值,过去要说贷款的话,银行最重要的是调查信用,要抵押,就这两个事。调查信用是传统的来看数据的方法,也可以讲这是数据,但是传统的,为什么它?它跟互联网无关。我们怎么用数据来变成一个企业的信用呢?用过去它在我们平台上沉淀下来的数据,不是我们去收集的数据,是沉淀下来的数据,这些数据过去是没有用的,但是因为我们把它变成模型,变成信用以后,就变成这家小企业的财富,才会使我们由300多个员工给70万人做贷款,这是数据的效用跟价值。
倒过来,对我们的组织结构的冲击是很大的,过去用这样的方法做事情,今天会想用另外的方法做事情,对我们的组织结构的冲击也是很大的。
我想表达的意思是什么呢?如果你今天讲数据的话,千万不要觉得大数据是从数据变成大数据的,不是这样的,其实今天实际上是一个把过去从所谓的信息社会变成了数据社会,可能这样讲更好一点。这句话是什么意思呢?过去因为没有互联网,因为没有计算能力,所以你能够得到的数据一定要大家觉得马上很有价值的东西,大家过去称之信息。
今天是因为有了互联网巨大的计算能力以后,今天你是可以得到很多数据,而不追求今天的数据价值,但是它在第二天可以带来更大的价值。从第一天起大家都知道数据,它是从信息到数据的转变,因为有了互联网,有了计算能力,大家可以设想一下第一天会要求拿到的是最有用的信息,但是过了两天发现,今天看起来没有用的东西变成了最有用的东西,谷歌是做的最好的例子,让一个点击,鼠标点一点可以挣几千美金,鼠标这个东西,在微软时代,多少人点鼠标没有人把它变成财富,但是互联网时代把它变成了财富。这是非常典型的例子,只收集信息,今天看来不会变成你的财富了,而去年得到看起来没有价值的东西可以变成财富,这是阿里巴巴自己很重要的理解。
今天我们对数据的理解,尽管有很多消费者喜欢,但是还很粗浅。我曾经跟马总讲的话,对我们自己公司反省,阿里巴巴对数据的理解还是非常原始的,另外一个角度讲,阿里巴巴对数据的理解不会超过苏宁对电子商务的理解。应该尊重苏宁集团,但苏宁对电子商务的理解的确不够。
讲这句话的意思是,大家对这件事情的认识还是很浅,我们对数据很尊敬,只是想表达一下我们在非常原始的状态,在这个行业,今天刚刚开始,严格上讲也没有专家,大家碰到的都是新问题,但是挑战不要低估了,走出两个误区,一个是觉得把过去的数据,过去谈数据,今天再谈大一点,把方法再搬过来。第二,脱离了互联网跟云计算讲数据,也是蛮大的误区。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08