京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据正新酝造一个支柱产业——物流
大数据对物流的影响越来越大。
提到物流,笔者首先想到了仓库,那种大集团企业里特别大的仓库,不知道您参观过没有?
笔者有一个同学大学是学化工专业的,本科毕业后去做了仓库管理,相比较化工企业生产线工作岗位来说,物流仓库管理岗位没有那么多污染,也没有化学实验可能的烧杯爆炸,环境要舒服很多。
金博尔大学拉尔夫教授从1973年获得博士学位,四十年来研究人机系统与用户系统设计,他认为,海量数据分析时代,企业仓库数据正进入角色转变,企业数据仓库进入了大数据时代,迎接不断增长的需求挑战。
《物流管理与供应链管理评论杂志》主编帕特里克在旧金山多年研究物流与供应链,他认为,在这个大数据时代,所有的大数据将成为竞争的关键,根据麦肯锡研究院(MGI)研究,企业或公司正在寻求如何利用大数据更好地服务客户,免费提供各种开放式数据,同时做好隐私保密与安全。多媒体、社交媒体、物联网的快速发展将推动企业未来数据呈现指数级增长。
移动设备也为物流行业提供了前所未有的实时传输时代,智能手机额和平板电脑接受、处理、发送大量数据,配送中心的电子车、卡车、传感器和装有射频读卡器的拖车等。
全球物流业角度,制造商、零售商、分销商、第三方物流供应商、第三方物流、货运代理、海运、汽车运输、铁路、航空货运、拖车、移动设备、物流枢纽(机场、海港、铁路码头),监管机构(海关)等,在美国物流已经超过了十几万亿美元,大约占国内生产总值的10%以上,发展中国家比如印度,物流占国内生产总值15%以上。
大数据对物流的影响越来越大,无论是托运商,零售商、社交网路、个性化网站、移动设备、供应商、运营商等。物流产业将迎来挑战,行业内或将出现结构变化,海量数据对物流的影响增加。
笔者认为,互联网技术与移动终端技术快速发展与用户几何级快速增长,大数据时代给物流产业带来的影响或将是巨大的:
1、传统企业
传统企业比如化工,生产出各种人们日常所需要的产品,比如毛巾、洗脸盆、肥皂、油漆、汽车用燃料、家庭用天然气等,前些年,这些企业以持续增加投资生产资料来带动企业扩张与发展,生产出产品数量快速增加,并存储在仓库或运送至市场,传统企业投资已经趋于饱和,传统企业亟待转型升级,很多企业也开始关注电子商务,希望通过把线下产品搬到线上,更好地完成销售,或者是与客户的沟通。
2、商场超市
那天看到一篇文章,说是未来的实体店面商场或更多地引入网上商城,顾客进入大商场,就可以用各种终端比如手机或平板上网,在休息间查询商场信息,快速检索想要查找的商品与商品信息,然后可以用终端点击购买,或者快速达到商场指定柜台购买。
一些大商场实体店为了留住客户,不得不提高服务,采取新颖方式,比如体验店,或者是顾客休闲娱乐相结合的各种方式来进行柜台销售。而商场商品也将从线下搬到线上,实现大商场的网上商城。
一些商场可能会减少店面,增加网上业务,商场员工办公室会从商场角落搬到大厦写字楼,同时,增加物流大仓库建设,增加大仓库中各种运输工具,大仓库不再是过去那种简单的存放场所,而是一个大的繁忙的工作场所。工作人员不是简单的看管货物,而是具备现代化物流知识的高级人才,甚至需要会开各种自动化运输工具。
3、家具卖场
笔者所在的这所城市里,有两个较大的家具城,而这一两年发现,实体家具城不见了,听说全部改成了电子商城,而家具也搬到了较远的仓库间里。
4、电子产品
在这所城市里,有一个非常大电子产品商贸城,里面有三四层楼,全部是各种家用小电器,商城内都是外租给一家一家私人柜台,原来呢,商城里顾客很多,都是到哪儿购买便宜又好用的家用小电器,比如台灯、手电筒、收音机、音响、小灯泡等等,如今,很多商城小老板把产品搬到了线上,商场里顾客看起来少了很多。
5、物联网与个性化物流
未来物联网会把小区监控、电视机、彩电、冰箱、私家车、空调、天然气、烟气灶、烤箱、微波炉等各种家电连接起来,相关服务、比如小区通知与服务、家电售后维修、住户水电煤气缴纳、小区安全监控、快递物流服务等实现个性化服务。
随着互联网实现了信息流更快速更便捷,互联网金融实现了货币流支付或转账,那么,物流业将快速发展。笔者认为,物流产业将带动服务业快速发展,物流业保持快速发展,行业规模、服务能力将提升,物流业正在成为下一个支柱产业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16