京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据恐惧症
大数据是人类文明的又一个破坏性发明
现在小崔和方舟子还在争辩,转基因是世界人口爆炸的福音还是对人身体的伤害?这个辩论,时间会给出答案,但是大数据更是一个值得大家争辩的事情,因为大数据涉及了我们的生活习惯和社会法则。大数据带来的副作用,大大超过了以前人类发明的范畴。
商业的大数据就是通过电子化数据的收集,包括手机轨迹,通话,信息,上网行为,购买,旅游,金融,等全方位的数据收集,对你进行分类、判断,推销。作为国内电商时代的开启者,淘宝上云集了数量惊人的数据:每一笔订单不仅包含顾客姓名、收货地址、下单时间等基本信息,甚至连顾客什么时候开始浏览某一件宝贝,跟售前客服讨价还价的过程,在几点几分下单成交,都有全部记录。通过这些信息记录,可以鉴别出你喜欢的东西,推断你的身份、收入、银行存款、家庭事业状况等等。在互联网日益繁荣、BAT三巨头触角无所不达的今天,越来越多人的工作、生活、社交都逃不开百度、腾讯、阿里、360等大小互联网企业甚至个人的全方位数据监控。
有许多人认为掌握了越多的数据,越详细的数据,就有机会通过“大数据”分析法来获得一个金矿。但当这些网站比你妈还更了解你的时候,你感觉到的不是关怀,而是恐怖。
现在的大数据分析,缺乏取样标准,不代表真实的因果关系。
在传统的统计学里面,最重要是数据的采样。比如一种药物的有效性,需要两组对比人群,在严密的实验条件下,长期跟踪,才能都出结论。现在的大数据分析,往往是数据的堆积和简单的关联分析。从严格的科学来讲,是一门伪科学。因为数据只是数据,只是过去,简单的数据积累不说明任何问题,不能真正判断一个人,预测一件事。如果基于大数据武断营销,那就是真正的恐怖了。从以下几个方面,就可以看出为什么大数据会让你害怕:
1. 害怕身份被盗用
在移动互联网时代,我们的朋友更多出现在网上。社交网络、QQ、微信、微博取代了面对面的人际交流,虚拟交流也在改变世界和人。基于大数据的应用流行之时,将有大量的人借用和盗用网络身份,达到个人目的。也许你从来没有离开老家,你的网络大数据却涉嫌犯罪。
2. 害怕数据造假
在一切看数据说话的今天,每个人、每个企业和商家或多或少都在改变数据。因为各种利益关系错综复杂,报出来的数据往往都应景而异。大数据时代,有意的网络数据造假也能成为一个商业领域,用来帮助别有用心的人或商家制造数据。
3. 害怕数据框定
比大数据更复杂的还是人。从心理学的角度,让人做出选择,就意味着要舍弃其他的可能性,这是一件异常困难的事情。人的认识和选择会应为各种原因,产生跳跃性的变化。如果按照数据分析,把人丢进一个箩筐终生定格,据此给他不光是特定类的商品,进而决定他能否从事某件事,限制他的网络视野,也是很不合理的。
例如,把大数据作为广告精准投放标准,虽说有一定合理性,但也并不绝对,这是由于人类的购买心理十分复杂。比如说有个消费者只是浏览了一辆汽车,跟着是汽车广告通过各种方式和渠道的狂轰滥炸,除了骚扰,并没有效果。
4. 害怕数据不公和数据歧视
完全依赖大数据进行分析、对人进行分类,其实将触及社会不公和歧视。作为商家,考虑到经营成本、营销利润和效率,其实暗地里都会打着各种小九九,而不是表面上把各类消费者一视同仁。毋庸置疑,高端消费者是各类企业的最爱,而低端消费者却让企业皱眉。但现在呢?每个人的消费记录和各种数据都被电子化的方式采集和收集着,一举一动逃不过大数据的记录。对保险公司营销员来说,你这个人的所有信息数据可以一览无余,不用你开口,他已经判断出是不是需要让你参保、保费标准等等;消费数据记录和售后服务记录,甚至都能让卖家挑选买家,把你列入顾客黑名单也不是不可能。
不可避免的,一旦成为数据穷人,那么就会面临歧视服务,所有消费者都是平等的这句话将成为历史。
5. 害怕数据垄断
目前的商业格局是:两方数据垄断势力正在形成,一方是国营企业,如电信、电力、医院等,一方是以BAT为中心的互联网大佬。特别是后者,在广泛收集数据之后,已经以大数据为依托,开始布局全行业的垄断性的经营,范围包括电子商务,教育,医疗,物流等。而这些垄断一旦形成,将大大降低中国企业的创新能力和竞争能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16