 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		
	
在AI被越来越广泛应用的背景下,不断有“恐AI言论”的出现,关于机器人将抢走人类工作机会的讨论已经屡见不鲜。
	
	
2030年,1亿中国人面临职业转型
	
 
近日,麦肯锡报告给出了一个触目惊心的数据:在包括人工智能和机器人技术在内的自动化发展迅速的情况下,到2030年,全球8亿人口的工作岗位将被机器取代。
	
 
到时,中国高达31%的工作时间将被自动化,中国约有1亿的人口面临职业转换,约占到时就业人口的13%。
	
 
中国真会因为人工智能面临大规模的就业变迁吗?3日上午,第四届世界互联网大会在乌镇开幕,多位互联网大佬都对人工智能发表了一番见解。
	
 
	 
 
	
 
马云:人类要有自信,机器不可能超越人类
	
 
阿里巴巴董事局主席马云在开幕式致辞时表示,对数字经济和网络空间与其担心,不如担当。
随着互联网技术的发展,近年来全球弥漫着一种对新技术的担心,担心机器会抢走人的工作机会,担心机器会控制人类,担心人类会毁灭在自己最伟大的发明中。
	
 
“新技术不是让人失业,而是让人做更有价值的事情,让人不去重复自己,而是去创新,让人的工作得到进化。” 马云举例说,清朝时期铁路出现,人们抵制铁路,担心沿线挑夫会失业影响社会稳定,但现在有200多万的铁路工人;集装箱出现后,搬运工人担心会失业,但港口却出现了很多吊船工人。
	
 
马云再次强调,与其担心技术夺走就业,不如拥抱技术,去解决新的问题。人类有独特的创造力,所以人类要有自信,机器是不可能超越人类的。
	
 
过去30年,我们把人变成了机器,未来30年,我们将把机器变成人,但最终应该让机器更像机器、人更像人。
	
 
机器没有灵魂、机器没有信仰,我们人类有灵魂、有信仰、有价值观、有独特的创造力,人类要有自信、相信我们可以控制机器。
	
 
未来机器学习、人工智能一定会取代大部分机械的工作,而人类将会从事更有创意、更有创造力、更有体验的工作,服务业一定会成为未来就业的主要来源。
	
 
	 
 
	
 
李彦宏:互联网人口红利已消失,未来增长动力是AI
	
 
百度公司董事长兼CEO李彦宏表示,他依然坚持去年在世界互联网大会上提到的观点——“无线(移动)互联网已经结束了”。从数据来看,今天中国互联网网民增速只有6%左右。过去四年,中国互联网网民的增速已经慢于中国GDP的成长速度,这意味着互联网的人口红利没有了。
	
 
网民红利虽然没有了,但人工智能变为了成长的新动力。李彦宏指出,未来中国数字经济发展的主要推动力是人工智能,人工智能会以非常快的速度向前发展。
	
 
他认为,人工智能今天还处在一个发展非常早期的阶段,非常像十几年前的中国互联网的成长。过去中国互联网、世界互联网增长动力有三个:网民人数的增加,上网时间的增加,以及网上信息量的增加。如今,人工智能有三个成长的动力,包括算法、算力、数据:
	
 
算法:人工智能尤其是机器学习的算法在过去几年迅速发展,不断的有各种各样的创新,深度学习,DNN、RNN、CNN到GAN……不停地有新的发明创造出来。
	
 
算力:如今,计算的成本在不断下降,服务器也变得越来越强大。过去我们觉得人工智能不实用,是因为它会用到的算力太大,大家会觉得在经济上不能够承受。但今天的算力已经到达了临界点,可以使得很多的人工智能变成实际,变得可用。
	
 
数据:数据的产生仍然在以一个非常高的速度在发展,尤其对于中国互联网来说,它有非常独特的地方,7.5亿的网民全部说的是同一种语言,全部是同样的文化,全部遵守同样的法律,这么大的一个人群,这么大的一个市场,这么大的一个数据集,并且在不断地产生新的数据,它会进一步推动算法的不断创新,以及对算力提出更新的要求。
李彦宏在演讲结尾指出,汽车只是被人工智能改变的行业之一,未来,从房产到教育、医疗、物流、能源等产业,都会因为人工智能技术而不断发生变化,人工智能对实体经济的推动显而易见:
	
 
汽车是一个非常大的产业,在中国大概占到了GDP的六分之一,这样的一个产业,在百年不变的情况下,未来几年会发生巨大的变化。可想而知,人工智能技术对于实体经济、对于各行各业的推动是显而易见的……从房产到教育、医疗、物流、能源等等,我们可以想到的产业都会因为人工智能的技术而发生不断地变化。
	
 
	 
 
	
 
库克:我担心人像机器一样思考
	
 
苹果首席执行官蒂姆·库克(Tim Cook)表示,很多人都在谈论AI,我并不担心机器人会像人一样思考,我担心人像机器一样思考!我们相信AR能够帮助人们工作,而且帮助人们在教育医疗有所突破,让世界更加美好。
	
 
库克认为,我们相信科技是创造机遇并摆脱贫困的力量,科技本身并没有好坏之分,但确保科技富有人性,是我们每个人的共同责任,这也是苹果非常重视的责任。要让科技的使命得以实现,科技的好处也必须普惠于民。
	
 
库克说,很多人担心AI技术,未来充满了各种可能性,我们的世界可以变得更好。如果AI可以实现增强现实和机器学习技术,这些技术注入人机理念,可以帮助人们在教育、医疗等领域的辅助功能上实现突破。
	
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23