京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在AI被越来越广泛应用的背景下,不断有“恐AI言论”的出现,关于机器人将抢走人类工作机会的讨论已经屡见不鲜。
2030年,1亿中国人面临职业转型
近日,麦肯锡报告给出了一个触目惊心的数据:在包括人工智能和机器人技术在内的自动化发展迅速的情况下,到2030年,全球8亿人口的工作岗位将被机器取代。
到时,中国高达31%的工作时间将被自动化,中国约有1亿的人口面临职业转换,约占到时就业人口的13%。
中国真会因为人工智能面临大规模的就业变迁吗?3日上午,第四届世界互联网大会在乌镇开幕,多位互联网大佬都对人工智能发表了一番见解。
马云:人类要有自信,机器不可能超越人类
阿里巴巴董事局主席马云在开幕式致辞时表示,对数字经济和网络空间与其担心,不如担当。
随着互联网技术的发展,近年来全球弥漫着一种对新技术的担心,担心机器会抢走人的工作机会,担心机器会控制人类,担心人类会毁灭在自己最伟大的发明中。
“新技术不是让人失业,而是让人做更有价值的事情,让人不去重复自己,而是去创新,让人的工作得到进化。” 马云举例说,清朝时期铁路出现,人们抵制铁路,担心沿线挑夫会失业影响社会稳定,但现在有200多万的铁路工人;集装箱出现后,搬运工人担心会失业,但港口却出现了很多吊船工人。
马云再次强调,与其担心技术夺走就业,不如拥抱技术,去解决新的问题。人类有独特的创造力,所以人类要有自信,机器是不可能超越人类的。
过去30年,我们把人变成了机器,未来30年,我们将把机器变成人,但最终应该让机器更像机器、人更像人。
机器没有灵魂、机器没有信仰,我们人类有灵魂、有信仰、有价值观、有独特的创造力,人类要有自信、相信我们可以控制机器。
未来机器学习、人工智能一定会取代大部分机械的工作,而人类将会从事更有创意、更有创造力、更有体验的工作,服务业一定会成为未来就业的主要来源。
李彦宏:互联网人口红利已消失,未来增长动力是AI
百度公司董事长兼CEO李彦宏表示,他依然坚持去年在世界互联网大会上提到的观点——“无线(移动)互联网已经结束了”。从数据来看,今天中国互联网网民增速只有6%左右。过去四年,中国互联网网民的增速已经慢于中国GDP的成长速度,这意味着互联网的人口红利没有了。
网民红利虽然没有了,但人工智能变为了成长的新动力。李彦宏指出,未来中国数字经济发展的主要推动力是人工智能,人工智能会以非常快的速度向前发展。
他认为,人工智能今天还处在一个发展非常早期的阶段,非常像十几年前的中国互联网的成长。过去中国互联网、世界互联网增长动力有三个:网民人数的增加,上网时间的增加,以及网上信息量的增加。如今,人工智能有三个成长的动力,包括算法、算力、数据:
算法:人工智能尤其是机器学习的算法在过去几年迅速发展,不断的有各种各样的创新,深度学习,DNN、RNN、CNN到GAN……不停地有新的发明创造出来。
算力:如今,计算的成本在不断下降,服务器也变得越来越强大。过去我们觉得人工智能不实用,是因为它会用到的算力太大,大家会觉得在经济上不能够承受。但今天的算力已经到达了临界点,可以使得很多的人工智能变成实际,变得可用。
数据:数据的产生仍然在以一个非常高的速度在发展,尤其对于中国互联网来说,它有非常独特的地方,7.5亿的网民全部说的是同一种语言,全部是同样的文化,全部遵守同样的法律,这么大的一个人群,这么大的一个市场,这么大的一个数据集,并且在不断地产生新的数据,它会进一步推动算法的不断创新,以及对算力提出更新的要求。
李彦宏在演讲结尾指出,汽车只是被人工智能改变的行业之一,未来,从房产到教育、医疗、物流、能源等产业,都会因为人工智能技术而不断发生变化,人工智能对实体经济的推动显而易见:
汽车是一个非常大的产业,在中国大概占到了GDP的六分之一,这样的一个产业,在百年不变的情况下,未来几年会发生巨大的变化。可想而知,人工智能技术对于实体经济、对于各行各业的推动是显而易见的……从房产到教育、医疗、物流、能源等等,我们可以想到的产业都会因为人工智能的技术而发生不断地变化。
库克:我担心人像机器一样思考
苹果首席执行官蒂姆·库克(Tim Cook)表示,很多人都在谈论AI,我并不担心机器人会像人一样思考,我担心人像机器一样思考!我们相信AR能够帮助人们工作,而且帮助人们在教育医疗有所突破,让世界更加美好。
库克认为,我们相信科技是创造机遇并摆脱贫困的力量,科技本身并没有好坏之分,但确保科技富有人性,是我们每个人的共同责任,这也是苹果非常重视的责任。要让科技的使命得以实现,科技的好处也必须普惠于民。
库克说,很多人担心AI技术,未来充满了各种可能性,我们的世界可以变得更好。如果AI可以实现增强现实和机器学习技术,这些技术注入人机理念,可以帮助人们在教育、医疗等领域的辅助功能上实现突破。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26