
R语言 字符串的处理(解析+案例)
数据分析师的日常工作就是数据预处理,数据预处理最经常遇到的问题就是字符串的处理,这部分很难,我以前看过一些R的书和一些技术博客,现在依旧发现有些细节做不好,下面我就转载别人的一些字符串处理的方法,我会在下面说说我的看法:
字符串分割函数:strsplit( )
字符串连接函数:paste( )
计算字符串长度:nchar( )
字符串截取函数:substr( )及substring( )
字符串替换函数:chartr( )
大小写转换函数:toupper( )、tolower( )及casefold( )
以目前的工作来说,前4个至少每次都可以用到其中的一两个,5和6不经常用。
1:strsplit( )函数用于字符串分割,其中split是分割参数。所得结果以默认以list形式展示。
用法:strsplit("字符串",sep=“”(分隔符,可省略sep=,直接写“”双引号里面的内容))
2:paste( )函数用于字符串连接,其中sep负责两组字符串间的连接;collapse负责一组字符串内部的连接。
用法:paste(..., sep = " ", collapse = NULL) (举例:A<-c(a,b),B<-c(1,2),paste(A,B,sep="_",collapse=":")结果为:A_1:B_2。
3:很好理解,用法+案例:nchar(“abc”)结果为3。n是char的长度计算。
4:substr( )函数和substring( )函数是截取字符串最常用的函数,两个函数功能方面是一样的,只是其中参数设置不同。
substr( )函数:必须设置参数start和stop,如果缺少将出错。用法:substr(“字符串”,start=数字,stop=数字)下同。
substring( )函数:可以只设置first参数,last参数若不设置,则默认为1000000L,通常是指字符串的最大长度。
这个也很少理解:substr("abcd",2,3)结果为bc;substring("abcd",2)结果为bcd。
注意:substr和substring的区别就是最后一个参数:前者是必须存在stop结尾,后者随意。
5:chartr( )函数:将原有字符串中特定字符替换成所需要的字符。
其中参数old表示原有字符串中内容;new表示替换后的字符内容
用法:chartr(old= ,new= ,数据框)
案列:x<-c(abc),chartr(old="b",new="s",x)结果就是asc。
6:toupper( )函数:将字符串统一转换为大写。
tolower( )函数:将字符串统一转换为小写。
casefold( )函数:根据参数转换大小写。
前面2个函数比较简单,说说第三个:casefold(向量,upper=T或FALSE),upper=T全是大写,反之。
写这个有2个好处,1是可以帮助别人,2是自我巩固,当然重点是2自我巩固。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04