京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中的复制操作及copy模块中的浅拷贝与深拷贝方法
浅拷贝和深拷贝是Python基础学习中必须辨析的知识点,这里我们将为大家解析Python中的复制操作及copy模块中的浅拷贝与深拷贝方法:
程序中常常需要复制一个对象, 按思路应该是这样的
a = [1, 2, 3]
b = a
# [1, 2, 3]
print b
已经复制好了,但是现在得改变一下第一个元素的值把它改成5
b[0] = 5
# [5, 2, 3]
print b
# [5, 2, 3]
print a
我改变了b的第一个元素的值,但是a的值也改变了,这是因为python中的=是引用.a和b指向的是相同的列表,所以改变列表会出现以上的结果.
解决方法是切片操作
a = [1, 2, 3]
b = a[:]
b[0] = 4
# [1, 2, 3]
# [4, 2, 3]
print a
print b
但是在嵌套列表的时候呢,试一试
a = [[1,2,3], 4, 5]
b = a[:]
b[1] = 0
# [[1,2,3], 4, 5]
# [[1,2,3], 0, 5]
print a
print b
恩!没什么问题,在试一试嵌套列表元素
a = [[1,2,3], 4, 5]
b = a[:]
b[0][0] = 5
# [[5,2,3], 4, 5]
# [[5,2,3], 4, 5]
print a
print b
b = a[:]
a的值还是改变了,切片复制只对该对象进行拷贝不会对子元素进行拷贝
copy 模块
copy模块用于对象的拷贝操作。该模块非常简单,只提供了两个主要的方法: copy.copy 与 copy.deepcopy ,分别表示浅复制与深复制。什么是浅复制,什么是深复制,网上有一卡车一卡车的资料,这里不作详细介绍。复制操作只对复合对象有效。用简单的例子来分别介绍这两个方法。
浅复制只复制对象本身,没有复制该对象所引用的对象。
#coding=gbk
import copy
l1 = [1, 2, [3, 4]]
l2 = copy.copy(l1)
print l1
print l2
l2[2][0] = 50
print l1
print l2
结果:
[1, 2, [3, 4]]
[1, 2, [3, 4]]
[1, 2, [50, 4]]
[1, 2, [50, 4]]
同样的代码,使用深复制,结果就不一样:
import copy
l1 = [1, 2, [3, 4]]
l2 = copy.deepcopy(l1)
print l1
print l2
l2[2][0] = 50
print l1
print l2
结果:
[1, 2, [3, 4]]
[1, 2, [3, 4]]
[1, 2, [3, 4]]
[1, 2, [50, 4]]
改变copy的默认行为
在定义类的时候,通过定义__copy__和__deepcopy__方法,可以改变copy的默认行为。下面是一个简单的例子:
class CopyObj(object):
def __repr__(self):
return "CopyObj"
def __copy__(self):
return "Hello"
obj = CopyObj()
obj1 = copy.copy(obj)
print obj
print obj1
结果:
CopyObj
Hello
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23