京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代带来的大变革 改变人们生活
大数据时代的来临,带给我们众多的冲击,每个人都应当与时俱进、不断提升,放弃残缺的守旧思想,大胆接受新的挑战。
探讨大数据时代将给我们带来哪些变革,首先要搞清楚什么是大数据,其次,要厘清大数据会带来哪些变革,最后,要思考如何应对大数据时代的挑战。
什么是大数据?
国际数据公司定义了大数据的四大特征:海量的数据规模(vast)、快速的数据流转和动态的数据体系(velocity)、多样的数据类型(variety)和巨大的数据价值(value)。仅从海量的数据规模来看,全球IP流量达到1EB所需的时间,在2001年需要1年,在2013年仅需1天,到2016年则仅需半天。全球新产生的数据年增40%,全球信息总量每两年就可翻番。
而根据2012年互联网络数据中心发布的《数字宇宙2020》报告,2011年全球数据总量已达到1.87ZB(1ZB=10万亿亿字节),如果把这些数据刻成DVD,排起来的长度相当于从地球到月亮之间一个来回的距离,并且数据以每两年翻一番的速度飞快增长。预计到2020年,全球数据总量将达到35~40ZB,10年间将增长20倍以上。
需要强调的是:所谓大数据并不仅仅是指海量数据,而更多的是指这些数据都是非结构化的、残缺的、无法用传统的方法进行处理的数据。也正是因为应用了大数据技术,美国谷歌公司才能比政府的公共卫生部门早两周时间预告2009 年甲型H1N1流感的暴发。
厘清大数据带来了哪些变革
就像电力技术的应用不仅仅是发电、输电那么简单,而是引发了整个生产模式的变革一样,基于互联网技术而发展起来的“大数据”应用,将会对人们的生产过程和商品交换过程产生颠覆性影响,数据的挖掘和分析只是整个变革过程中的一个技术手段,而远非变革的全部。“大数据”的本质是基于互联网基础上的信息化应用,其真正的“魔力”在于信息化与工业化的融合,使工业制造的生产效率得到大规模提升。
简而言之,“大数据”并不能生产出新的物质产品,也不能创造出新的市场需求,但能够让生产力大幅提升。正如,《大数据时代:生活、工作与思维的大变革》作者肯尼思·库克耶和维克托·迈尔-舍恩伯格指出:数据的方式出现了3个变化:第一,人们处理的数据从样本数据变成全部数据;第二,由于是全样本数据,人们不得不接受数据的混杂性,而放弃对精确性的追求;第三,人类通过对大数据的处理,放弃对因果关系的渴求,转而关注相互联系。这一切代表着人类告别总是试图了解世界运转方式背后深层原因的态度,而走向仅仅需要弄清现象之间的联系以及利用这些信息来解决问题。
如何应对大数据带来的挑战
第一, 大数据将成为各类机构和组织,乃至国家层面重要的战略资源。
在未来一段时间内,大数据将成为提升机构和公司竞争力的有力武器。从某一层面来讲,企业与企业的竞争已经演变为数据的竞争,工业时代引以自豪的厂房与流水线,变成信息时代的服务器。阿里巴巴集团的服务器多达上万台,而谷歌的服务器超过了50万台。重视数据资源的搜集、挖掘、分享与利用,成为当务之急。
第二,大数据的公开与分享成为大势所趋,政府部门必须身先士卒。
2013年6月在英国北爱尔兰召开G8会议,签署了《开放数据宪章》,要求各国政府对数据分类,并且公开14类核心数据,包括:公司、犯罪与司法、地球观测、教育、能源与环境、财政与合同、地理空间、全球发展、治理问责与民主、保健、科学与研究、统计、社会流动性与福利和交通运输与基础设施。同年7月,我国国务院就要求推进9个重点领域信息公开工作。正如李克强总理所强调的,社会信用体系建设包括政务诚信、商务诚信、社会诚信的建设,而政务诚信是“三大诚信”体系建设的核心,政府言而有信,才能为企业经营作出良好示范。作为市场监督和管理者,政府应首当其冲推进政务公开,建设诚信政府。为此,国务院通过《社会信用体系建设规划纲要(2014~2020年)》,要求依法公开在行政管理中掌握的信用信息,提高决策透明度,以政务诚信示范引领全社会诚信建设。
第三,机构组织的变革与全球治理成为必然的选择。
在工业时代,以高度的专业分工形成的韦伯式官僚制组织形态,确实具有较高的效率。然而,这种专业化分工一旦走向极致,就容易出现分工过细、庞大臃肿、条块分割等弊端,无法有效应对新的挑战。大数据技术提供了一种解困之道:在管理的流程中,管理对象和事务产生的数据流只遵循数据本身性质和管理的要求,而不考虑专业分工上的区隔,顺应了全球治理的需要。
1990年,时任国际发展委员会主席勃兰特,首次提出“全球治理”的概念。所谓全球治理,指的是通过具有约束力的国际规制(regimes)和有效的国际合作,解决全球性的政治、经济、生态和安全问题,以维持正常的国际政治经济秩序。为了顺应全球治理的浪潮,我国应当构建自己的全球治理理论。深化对全球化和全球治理的研究,为世界贡献中国对全球治理的先进理念。
当然,构建我国最新的全球治理理论,当务之急是构建我们的国家治理理论,夯实基础。《中共中央关于全面深化改革若干重大问题的决定》指出,“全面深化改革的总目标是完善和发展中国特色社会主义制度,推进国家治理体系和治理能力现代化”。这充分体现了与时俱进的治理理念,切中了我们国家运行中的核心问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01