
作为即将被机器人取代的第一批职业人,该如何选择
如果你是一名人类工人,那么很不幸地通知你,机器即将在20年内逐步取代你的工作:到2030年,机器人和人工智能将“淘汰”所有人类工人。
近日,麦肯锡全球研究院(McKinsey Global Institute)在周三发布的报告中称,随着科技的进步,机器人将会取代全球8亿个工作岗位,未来全球大概有3.75亿人口将面临重新就业,其中中国占1亿。
麦肯锡报告中分了11个行业大类,看不同国家未来在这些行业的岗位需求变化。其中涉及到创意工作、技术类工程师、管理类以及社会互动类的岗位需求增长明显,因为机器还无法在这些领域取代人类。另一方面,那些在可预测环境中进行物理活动的部分岗位需求将下降明显。
(来源于麦肯锡报告)
(来源于网友摄于某次人工智能大会)
至于人工智能是如何取代人类的?C君认为网友@朱帝庞克 曾经的一张图通过对职业技能按功能分类以后,根据不同职业的属性和岗位要求等四个层面进行细分,总结出的关于机器人的入侵人类职业的路线很具有代表性。
看到人工智能的来势汹汹,很多人甚至开始产生自我怀疑,产生了对机器人的异样的“敬畏”,1969年日本机器人专家森昌弘提出“恐怖谷理论”,为什么人们如此“惧怕”机器人?
根据森昌弘的说法,随着机器人的拟人程度增加,人类对它的好感度就会改变。通过森昌弘图表可以发现,恐怖谷理论就是随着机器人到达“接近人类”程度时候,人类好感度突然下降的范围。会活动的类人体比静止类人体变动的幅度更大。
除了人工智能除了“惧怕”,我们还应该更理性的思考自己的定位和自我职业规划。
麦肯锡报告中也特别指出,到2030年中国将有至少1.18亿人的岗位被机器人取代,而其中700-1200万人需要转换职业(这意味着他们原有的岗位彻底被机器人取代,不再具有人工价值)。而1亿多人口面临再就业,就意味着1亿多人口需要掌握新技能,学习新技术,提升自身的适应时代发展的职业技能与技巧。
(图为成功的人工智能转型需要因素,来源麦肯锡报告)
经过C君采访,CDA数据分析研究院的老师们纷纷指出:个人职业转型关系着自身职业发展,转型就意味着自我投资,选择依旧需要十分谨慎。
顺应人工智能发展的大潮,经管之家联合旗下CDA数据分析师教育品牌成立AIU人工智能学院(AI University),为广大的数据科学家、数据分析师、机器学习工程师、大数据分析师、人工智能工程师等岗位的从业者提供众多优质在线课程,无疑这给很多转型人员一个新的选择和机会来提升自我,适应时代发展对人才的需求。
推荐学习书籍
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08