京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师等级认证考试
(Certified Data Analyst Certificate)
【考试简介】
CDA(Certified Data Analyst),亦称“CDA数据分析师”,指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA秉承着总结凝练最先进的商业数据分析实践为使命,明晰各类数据分析从业者的知识体系为职责,旨在加强全球范围内正规化、科学化、专业化的大数据及数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。
“CDA数据分析师认证”是一套专业化,科学化,国际化,系统化的人才考核标准,分为CDA LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ,涉及金融、电商、医疗、互联网、电信等行业大数据及数据分析从业者所需要具备的技能,符合当今全球大数据及数据分析技术潮流,为各界企业、机构提供数据分析人才参照标准。经管之家为中国区CDA数据分析师认证考试唯一主办机构,于每年6月与12月底在全国范围举办线下数据分析师考试,通过考试者可获得CDA数据分析师认证证书。
【CDA等级认证考试大纲】

CDA Level I :业务数据分析师。专指政府、金融、电信、零售等行业前端业务人员;从事市场、管理、财务、供应、咨询等职位业务人员;非统计、计算机专业背景零基础入行和转行就业人员。CDA Level Ⅰ业务数据分析师需要掌握概率论和统计理论基础,能够熟练运用Excel、R、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。
CDA Level II:建模分析师。一年以上数据分析岗位工作经验,或通过CDA Level Ⅰ认证。专指政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。在Level Ⅰ的基础上更要求掌握多元统计、时间序列、数据挖掘等理论知识,掌握高级数据分析方法与数据挖掘算法,能够熟练运用SPSS Modeler、SAS、PYTHON、R等至少一门专业分析软件,熟悉适用SQL访问企业数据库,结合业务,能从海量数据提取相关信息,从不同维度进行建模分析,形成逻辑严密能够体现整体数据挖掘流程化的数据分析报告。
CDA Level II:大数据分析师。一年以上数据分析岗位工作经验,或通过CDA Level Ⅰ认证。专指政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与云端大数据的人员。在Level Ⅰ的基础上要求掌握JAVA语言和linux操作系统知识,能够掌握运用Hadoop、Spark、Storm等专业大数据架构及分析软件,从海量数据中提取相关信息,并能够结合R、python等软件,形成严密的数据分析报告。
CDA Level III:数据科学家。三年以上数据分析岗位工作经验,或通过任意一门CDA Level ⅠI认证。专指政府、金融、电信、零售、互联网、电商、医学等行业数据分析资深人员。负责制定企业数据发展战略,发现企业数据价值,提升企业运行效率,增加企业价值。能够带领数据团队将企业的数据资产进行有效的整合和管理,建立内外部数据的连接;具有数据规划的能力。
【报考条件】
Level I:无要求,皆可报考
Level II:(满足以下之一皆可报名)
1. 获得CDA Level Ⅰ认证证书
2. 本科及以上学历需从事数据分析相关工作1年以上
3. 本科以下学历需从事数据分析相关工作2年以上
Level III:(满足以下之一皆可报名)
1. 获得CDA Level Ⅱ认证证书
2. 本科及以上学历需从事数据分析相关工作3年以上
3. 本科以下学历需从事数据分析相关工作4年以上
(注:上述数据分析相关工作不限制行业,工作可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
【考试方式】
线下统考,上机答题。考生报名后根据准考证信息到考试地点参加考试。
【考试内容】
Level I:客观题(单选+多选)。考试内容请参考CDA Level Ⅰ考试大纲。
Level II:客观题+案例分析。考试内容请参考CDA Level Ⅱ考试大纲。
Level III:客观题+案例分析。考试内容请参考CDA Level III考试大纲。
【考试大纲】
【考试安排】
一、报名时间
2017年12月20日-2018年6月4日
二、考试时间
2018年6月30日,具体时间见准考证信息。
三、考试地点
北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/福州/太原/武汉/长沙/西安/贵阳/郑州/昆明/乌鲁木齐/沈阳/哈尔滨(21所城市)
四、考试费用
Level I:1000 RMB
Level II:1500 RMB
Level III:1800 RMB
【报名流程】
进入考试通道——在线注册——提交资料——报考科目——完成缴费——审核通过——报名成功
【评分成绩】
考试最终成绩分为A,B,C,D四个层次,A,B,C皆为通过考试并获得认证证书,D为不通过。
【CDA持证人福利】
1.可吸纳为CDA Institute、中国数据分析师(CDA)俱乐部会员,活动中具有优先报名参与权。
2.可优先获得CDA内部就业及职业发展推荐。
3.免费参与CDA举办的中国数据分析师行业峰会、大数据峰会、研讨会等各项活动,Level Ⅱ与Level III持证人享受特权位置。
4.可申请加入CDA数据分析项目组,参与项目合作(提供项目给持证人演练)。
5.CDA Level Ⅰ持证人免费享受Peixun.net会员服务6个月(价值588 RMB),Level Ⅱ与Level III持证人免费享受peixun.net会员服务1年 (价值998 RMB);
6.其他特权皆以各类活动公告为主。
【CDA证书样本】

官方唯一报名入口:http://exam.cda.cn/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22