京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R语言基于新浪股票数据分析金融数据的“统计常识”
本文利用这里提到的方法,进行改进,从而批量获取所有股票的数据,并对股票数据进行了简单的统计。
首先使用该程序需要用到一个csv文件,记录了各个股票的名称和代码。
格式如下:

至于制作的话,还是挺简单的,百度一下股票代码,或者直接到这里,可以轻松获得所有股票代码,然后放进excel按空格分割,处理一下就可以了。这里有一份我做好的,不过只有上海的股票有兴趣可以拿去stockid.csv。
注意,如果是其他的股票的话,请参考我前面提到的博文相应修改代码,
上证代码是 ss,深证代码是 sz,港股代码是 hk
比如茅台:6000519.ss,万科 000002.sz,长江实业 0001.hk
代码中的'.ss'要改成其他。
library(quantmod)
stock=read.csv('F:/Program Files/RStudio/stockid.csv',stringsAsFactors=F)
data=list()
for(i in 1:length(stock$id)){
try(setSymbolLookup(TEMP=list(name=paste0(stock$id[i],'.ss'))))
try(getSymbols("TEMP",warnings=F))
try(data[stock$name[i]]<-list(TEMP))
}
这时候的data是一个list,它存放了你的csv中所有的股票数据,可以通过比如data$浦发银行 ,来得到该股票的信息。
数据样例:

今天是2015年8月25号,所以获取的数据都是最新的历史数据。
可以看到一共有6列数据,它们的意思分别是:
Open price 开盘价
High price 最高价
Low price 最低价
Close price 收盘价
volume 交易量
Adjusted price 调整价格
这里稍微对股市稍微统计一下,提供一个例子给大家。将所有股票的收盘价提取出来,然后计算各个股票收盘价的最大最小均值等等。
library(plyr)
closedata<-lapply(data,function(x){
x=as.data.frame(x)
return(list(x[,4])) #提取第4列,即收盘价
})
ldply(closedata,function(x)summary(x[[1]])) #对每个股票求summary
部分运行结果:
> ldply(closedata,function(x)summary(x[[1]]))
.id Min. 1st Qu. Median Mean 3rd Qu. Max.
1 浦发银行 7.11 9.610 13.890 17.760 21.80 61.59
2 白云机场 5.97 7.050 8.920 10.060 11.37 23.03
3 武钢股份 1.99 2.730 4.605 6.106 7.67 22.86
4 东风汽车 2.42 3.130 4.530 4.948 5.97 15.19
5 中国国贸 6.00 9.790 10.800 11.950 12.84 25.58
6 首创股份 3.73 5.705 6.720 8.073 8.18 23.45
7 上海机场 10.35 12.930 14.170 17.880 19.35 42.62
8 包钢股份 2.09 3.910 4.630 4.971 5.95 10.12
9 华能国际 4.06 5.640 6.710 7.508 8.11 18.73
10 皖通高速 3.36 4.240 5.215 5.792 6.49 20.05
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08