
大数据技术:内包还是外包
对于零售商来说,大数据是一把双刃剑。这些公司正在努力探索全方位的市场竞争,因为他们试图抵御像亚马逊公司这样的行业巨头,一些公司正在将大量资源部署到开发自己的大数据解决方案中,以试图与零售巨头进行竞争。
对于零售商来说,大数据是一把双刃剑。这些公司正在努力探索全方位的市场竞争,因为他们试图抵御像亚马逊公司这样的行业巨头,一些公司正在将大量资源部署到开发自己的大数据解决方案中,以试图与零售巨头进行竞争。
零售商面临的一个问题是他们需要内部构建还是应该将其外包给供应商。
随着软件即服务(SaaS)模式的普及,在企业环境中部署新的解决方案变得越来越简单和快速。这自然会导致行业不断增长的创新,因为传统的解决方案在短短几个星期内就容易被更新颖,更有效的解决方案所替代。
同时,大型零售商希望在公司内部开发解决方案的愿望,就像亚马逊在内部技术上投入大量资金,自己开发很多产品。然而,重要的是要意识到,并不是所有的产品和解决方案都可以或应该在内部建设。零售商应将基础设施视为数据平台,供应商以同样的方式进行创新,MAC和Android平台允许个别开发人员通过应用程序进行创新。
人们相信,云计算算法将在未来几年成为最常见的SaaS应用程序。把算法作为“核心竞争力”并将其发展局限于内部团队的零售商,只会扼杀技术创新,从长远来后将会落后。在这里列出其原因。
成本
伟大的算法解决方案需要核心人才。这些人才的竞争是十分激烈的,特别是数据科学。数据科学家通常具有计算机科学,统计学或数学方面的博士学位,其薪资超过15万美元。
由于市场上优秀的工程师和数据科学家的供应有限,这些工程师更多的是应聘初创公司或亚马逊,Google和Facebook等技术巨头的职位。不幸的是,大多数实体和在线零售商并不会成为顶尖工程师的目的地。因此,零售商必须通过支付更高薪金来弥补。
通过简单的数学计算表明,一个由20位数据科学家和工程师的团队可以将会让零售商每年花费400万美元的费用。而这只是招聘人才的费用,并没有包括来支持解决方案开发的任何基础设施的投资。相比之下,典型的SaaS解决方案每年的价格将低于100万美元(这可能是绝对的上限,传统的费用将低于50万美元)。通过与供应商合作,零售商可以节省大量的成本。
快速上市和灵活性
对于任何技术初创企业来说,快速推出市场是确定整体成功的关键。这包括内部技术的发展。从项目开始到启动,成功创建一个大数据解决方案可能需要2-3年的时间。虽然需要立即获得解决方案是一个亟待解决的问题,但技术的生命周期并不能绕过。两年的等待时间可能会造成一两个问题:公司新开发的解决方案在启动时几乎已经过时,或者试图领先于快速发展的技术环境,陷入无休止的重新设计周期中。
同时,随着基于云计算的SaaS模式的广泛应用,第三方解决方案的集成和部署速度从未如此快速。有些可以在短短的20天内集成和部署,这意味着尖端技术不断改进(算法在世界上最大的零售商不断优化和调整),快速满足即时需求。更重要的是,第三方供应商还提供了内部构建系统不具备的灵活性。删除和替换第三方SaaS解决方案非常简单,而不用担心昂贵的成本和内部斗争。
创新
技术和算法的进步非常快。纵观历史,竞争在创新中起着至关重要的作用。SaaS模型使其既易于部署又易于更换解决方案。因此,供应商正在不断创新,并面临改进的压力。当拥有内部团队,这个选择已经做出,因此没有竞争。一旦构建和部署解决方案,团队的目标就是维护和改进解决方案。但人们绝对不会知道内部团队的解决方案是否具有市场竞争力。
通过与第三方SaaS供应商合作,零售商能够在短时间内评估和部署许多尖端解决方案,同时投资更少。许多其他零售商都在使用这些解决方案,供应商经过不断的审查,得到客户的创新和改进。试图在内部构建这些解决方案不仅成本高昂而且进度缓慢,而且最重要的是限制创新,从而使企业的业务从长远来看并不那么灵活。
这并不意味着零售商应该将所有技术完全外包给供应商。当人们在大数据的背景下谈论技术时,它们指的是存储和处理数据的基础设施,以及解释数据和做出预测的算法。基础架构包括以安全,隐私保护的方式存储全方位的客户数据,如购买的优惠券,并使支持应用程序可访问该数据。
算法是基础设施之上的有效应用,利用数据来进行需求预测,流失预测,动态定价或产品个性化和定位。它们建立在数据基础之上,与操作系统之上的应用程序相同。因此,零售商必须投入内部资源和大量时间来建立安全,高效和可扩展的基础架构。
具有外部API和安全性(敏感数据加密)的正确基础设施将使企业能够利用供应商的尖端技术,不断创新。这将使企业将注意力和专业知识集中在核心业务功能上,而不是试图成为无关领域的专家。对于任何企业来说,资金,时间和研发能力都是有限的。成功的企业知道如何将这些资源放在正确的地方来获得成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08