
Python实现快速排序算法及去重的快速排序的简单示例
quick sort快速排序是一种再基础不过的排序算法,使用Python代码写起来相当简洁,这里我们就来看一下Python实现快速排序算法及去重的快速排序的简单示例:
快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
现在通过一个实例来说明快排。
比如有一个数组:
6 2 4 5 3
第一步:选取一个基准数,不要被这个名词吓到了,你可以把它看作是一个比较大小的数,因为排序就是比较大小,
比如我选取最后一个数3为基准数,依次把数组的数和3比较,比3小的放左边,比3大的放右边,这样有如下结果:
2 3 6 4 5
第二步:判断区间个数,经过第一步后左边区间只有一个数了,没有数字再和它比较了,因此不需要重复操作,右边区间还有:
6 4 5
重复第一步,选取5作为基准数,得到比较结果:
4 5 6
这样左右两边区间都只有一个数了,这就标志着排序完成,最后把所有区间合并就得到排序结果:
2 3 4 5 6
def quick_sort(array):
less = []; greater = []
if len(array) <= 1:
return array
pivot = array.pop()
for x in array:
if x <= pivot: less.append(x)
else: greater.append(x)
return quick_sort(less) + [pivot] + quick_sort(greater)
list = [2,4,2,6,7,8,1]
print quick_sort(list)
[1, 2, 2, 4, 6, 7, 8]
相比C、C#、JAVA之类的是不是简单多了^.^
TIP:去重的快速排序
如下, 只需要把集合修改为单值元素,这里我们使用Python3来演示:
# -*- coding: utf-8 -*-
import random
L = [2, 3, 8, 4, 9, 5, 6, 5, 6, 10, 17, 11, 2]
def qsort(L):
if len(L)<2: return L
pivot_element = random.choice(L)
small = [i for i in L if i< pivot_element]
#medium = [i for i in L if i==pivot_element]
large = [i for i in L if i> pivot_element]
return qsort(small) + [pivot_element] + qsort(large)
print(qsort(L))
输出:
[2, 3, 4, 5, 6, 8, 9, 10, 11, 17]
也可以直接使用, 集合(set)进行排序和去重.
mylist = list(set(L)) #集合自动排序字符串
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11