京公网安备 11010802034615号
经营许可证编号:京B2-20210330
斯坦福重磅发布 丨AI 指数年度报告丨附报告下载
斯坦福大学近日重磅发布了 AI 指数 2017 年度报告,从学术、产业、技术等多个角度盘点了 AI 领域的动态和进度。
点击【阅读原文】下载 "AI 指数年度报告"
毋庸置疑 ,AI 是近年来的行业热点,吸引了越来越多的从业者、行业领袖、决策者和公众的关注。AI 指数是斯坦福大学 AI 百年研究的一个项目,旨在追踪 AI 领域的行业动态,促进对 AI 的了解。
报告中进行了大量的调查和统计,主要包括 4 个部分:
活动量(Volume of Activity)
这部分围绕 AI 领域的“多少”(how much)方面。例如,论文发表数量、参会人数、创业投资等。
技术表现(Technical Performance)
这部分围绕 AI 表现“有多好”(how much)的方面。例如,计算机理解图像和证明定理的性能。
衍生测量(Derivative Measures)
我们对各个趋势之间的关系进行探究。还引入了一种探索性的方法,即AI 活力指数(AI Vibrancy Index),将学术界和行业的AI 趋势结合起来,对AI领域的现状进行量化。
接近人类表现(Towards Human Performance)
我们列举了 AI 在接近或超越人类表现方面取得的重大进展,以及当中遇到的困难与挑战。
活动量丨Volume of Activity
学术界
1. 论文发表数量
自 1996 年以来,计算机科学领域的论文数量增长了 6 倍,但在同一时期,每年发表的 AI 论文数量增加 了 9 倍。
以下学术论文的 Scopus 数据库中所收录,关键词为“人工智能”的计算机科学论文发表数量。
2. 选课人数
自1996年以来,斯坦福大学的 AI 课程选课人数增加了 11 倍。
机器学习(ML)是 AI 的一个分支。在这里之所以强调机器学习课程,是因为其选课人数的激增,而且机器学习技术对最近许多 AI 成果至关重要。
下图为斯坦福大学的 AI 和机器学习课程的选课人数。
由于其他大学的数据有限,因此在报告中突出斯坦福的数据。但是根据参考数据,可以推测其他大学的趋势与斯坦福类似。
3. 参会情况
以下为 AI 会议的参会人数。
研究重点转移,大型 AI 会议(1000人以上)中,研究重点已经从符号推理转向机器学习和深度学习。
但是在小型 AI 会议(1000人以下)中,符号推理方面仍在稳步发展。
行业
1. AI 创业公司
以下为风投资本支持的 AI 创业公司数量。自 2000 年以来,这一数量增加了 14倍。
2. AI 创业基金
在美国投资 AI 创业的基金数量也在增长,自 2000 年以来,每年投入 AI 创业的资本增加了 6 倍:
3. 职位需求
根据两个在线求职平台 Indeed 和 Monster 的数据,AI 相关岗位需求也在增长。自 2013 年以来,在美国需要 AI 技能的工作岗位已经增长了4.5 倍。
根据 Indeed 的数据,不同国家需要 AI 技能的工作岗位也在增加。
Monster 平台发布每年 AI 相关工作职位的数据,按具体技能划分。
4. 机器人进口
下面是产业自动化的情况。北美和全球的工作机器人购买量在增加。
开源软件
GitHub 项目统计
以下是 GitHub 上,TensorFlow 和 Scikit-Learn 软件包获得的星标(star)数量。(TensorFlow 和 Scikit-Learn 是用于进行深度学习和机器学习的热门软件包。)
以下是 Github 上其他 AI 和 ML 软件包的星标情况。
公共认知
媒体报道
关于 AI 的主流媒体文章报道中,含有正面情绪(蓝线)和负面情绪(紫线)的文章比例。
技术表现丨Technical Performance
视觉
1. 物体检测
大型视觉识别挑战(LSVRC)比赛中,AI 系统检测物体的性能也在显著提升。自 2010 年以来,错误率从 28.5 %下降到低于 2.5%。
2. 视觉问答
视觉问答(Visual Question Answering),是一种涉及计算机视觉和自然语言处理的学习任务。以下为在开放式回答有关图像问题的任务中,AI 系统的性能。
自然语言理解
1. 句法分析
AI 系统在确定句子句法结构上的表现。
2. 机器翻译
AI 系统在翻译英语和德语方面的表现。
3. 问答
AI 系统在文档中找到问题答案的性能。
4. 语音识别
AI 系统在识别语音录音的表现,2016 已经达到人类水平。
结语
这份报告中有以下亮点:
· 学术领域:自1996 年以来,AI 论文发表量增加了 9 倍;同时相关课程的选课人数也在增长。例如,斯坦福大学的 AI 课程选课人数比 20 年前,增加了 11 倍。
· 产业领域:自 2000 年以来,有资本支持的 AI 创业公司数量增长了 14 倍。针对AI 创业的投资在同一时期增加了 6 倍。
· 技术表现:AI 在图像和语音识别上都逐渐接近人类水平。AI 系统在针对现实问题的应用上表现出色,例如物体检测、理解和回答、图像分类等方面。
· 接近人类表现:AI 在某些方面已经能够接近人类的表现。比如在游戏应用中,AI 在国际象棋、围棋等方面都有不俗的表现。尽管如此,但当中也存在一些困难和挑战,比如在处理信息的深层含义方面,AI 与人类表现仍有一定的差距。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27