
斯坦福重磅发布 丨AI 指数年度报告丨附报告下载
斯坦福大学近日重磅发布了 AI 指数 2017 年度报告,从学术、产业、技术等多个角度盘点了 AI 领域的动态和进度。
点击【阅读原文】下载 "AI 指数年度报告"
毋庸置疑 ,AI 是近年来的行业热点,吸引了越来越多的从业者、行业领袖、决策者和公众的关注。AI 指数是斯坦福大学 AI 百年研究的一个项目,旨在追踪 AI 领域的行业动态,促进对 AI 的了解。
报告中进行了大量的调查和统计,主要包括 4 个部分:
活动量(Volume of Activity)
这部分围绕 AI 领域的“多少”(how much)方面。例如,论文发表数量、参会人数、创业投资等。
技术表现(Technical Performance)
这部分围绕 AI 表现“有多好”(how much)的方面。例如,计算机理解图像和证明定理的性能。
衍生测量(Derivative Measures)
我们对各个趋势之间的关系进行探究。还引入了一种探索性的方法,即AI 活力指数(AI Vibrancy Index),将学术界和行业的AI 趋势结合起来,对AI领域的现状进行量化。
接近人类表现(Towards Human Performance)
我们列举了 AI 在接近或超越人类表现方面取得的重大进展,以及当中遇到的困难与挑战。
活动量丨Volume of Activity
学术界
1. 论文发表数量
自 1996 年以来,计算机科学领域的论文数量增长了 6 倍,但在同一时期,每年发表的 AI 论文数量增加 了 9 倍。
以下学术论文的 Scopus 数据库中所收录,关键词为“人工智能”的计算机科学论文发表数量。
2. 选课人数
自1996年以来,斯坦福大学的 AI 课程选课人数增加了 11 倍。
机器学习(ML)是 AI 的一个分支。在这里之所以强调机器学习课程,是因为其选课人数的激增,而且机器学习技术对最近许多 AI 成果至关重要。
下图为斯坦福大学的 AI 和机器学习课程的选课人数。
由于其他大学的数据有限,因此在报告中突出斯坦福的数据。但是根据参考数据,可以推测其他大学的趋势与斯坦福类似。
3. 参会情况
以下为 AI 会议的参会人数。
研究重点转移,大型 AI 会议(1000人以上)中,研究重点已经从符号推理转向机器学习和深度学习。
但是在小型 AI 会议(1000人以下)中,符号推理方面仍在稳步发展。
行业
1. AI 创业公司
以下为风投资本支持的 AI 创业公司数量。自 2000 年以来,这一数量增加了 14倍。
2. AI 创业基金
在美国投资 AI 创业的基金数量也在增长,自 2000 年以来,每年投入 AI 创业的资本增加了 6 倍:
3. 职位需求
根据两个在线求职平台 Indeed 和 Monster 的数据,AI 相关岗位需求也在增长。自 2013 年以来,在美国需要 AI 技能的工作岗位已经增长了4.5 倍。
根据 Indeed 的数据,不同国家需要 AI 技能的工作岗位也在增加。
Monster 平台发布每年 AI 相关工作职位的数据,按具体技能划分。
4. 机器人进口
下面是产业自动化的情况。北美和全球的工作机器人购买量在增加。
开源软件
GitHub 项目统计
以下是 GitHub 上,TensorFlow 和 Scikit-Learn 软件包获得的星标(star)数量。(TensorFlow 和 Scikit-Learn 是用于进行深度学习和机器学习的热门软件包。)
以下是 Github 上其他 AI 和 ML 软件包的星标情况。
公共认知
媒体报道
关于 AI 的主流媒体文章报道中,含有正面情绪(蓝线)和负面情绪(紫线)的文章比例。
技术表现丨Technical Performance
视觉
1. 物体检测
大型视觉识别挑战(LSVRC)比赛中,AI 系统检测物体的性能也在显著提升。自 2010 年以来,错误率从 28.5 %下降到低于 2.5%。
2. 视觉问答
视觉问答(Visual Question Answering),是一种涉及计算机视觉和自然语言处理的学习任务。以下为在开放式回答有关图像问题的任务中,AI 系统的性能。
自然语言理解
1. 句法分析
AI 系统在确定句子句法结构上的表现。
2. 机器翻译
AI 系统在翻译英语和德语方面的表现。
3. 问答
AI 系统在文档中找到问题答案的性能。
4. 语音识别
AI 系统在识别语音录音的表现,2016 已经达到人类水平。
结语
这份报告中有以下亮点:
· 学术领域:自1996 年以来,AI 论文发表量增加了 9 倍;同时相关课程的选课人数也在增长。例如,斯坦福大学的 AI 课程选课人数比 20 年前,增加了 11 倍。
· 产业领域:自 2000 年以来,有资本支持的 AI 创业公司数量增长了 14 倍。针对AI 创业的投资在同一时期增加了 6 倍。
· 技术表现:AI 在图像和语音识别上都逐渐接近人类水平。AI 系统在针对现实问题的应用上表现出色,例如物体检测、理解和回答、图像分类等方面。
· 接近人类表现:AI 在某些方面已经能够接近人类的表现。比如在游戏应用中,AI 在国际象棋、围棋等方面都有不俗的表现。尽管如此,但当中也存在一些困难和挑战,比如在处理信息的深层含义方面,AI 与人类表现仍有一定的差距。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29