
斯坦福重磅发布 丨AI 指数年度报告丨附报告下载
斯坦福大学近日重磅发布了 AI 指数 2017 年度报告,从学术、产业、技术等多个角度盘点了 AI 领域的动态和进度。
点击【阅读原文】下载 "AI 指数年度报告"
毋庸置疑 ,AI 是近年来的行业热点,吸引了越来越多的从业者、行业领袖、决策者和公众的关注。AI 指数是斯坦福大学 AI 百年研究的一个项目,旨在追踪 AI 领域的行业动态,促进对 AI 的了解。
报告中进行了大量的调查和统计,主要包括 4 个部分:
活动量(Volume of Activity)
这部分围绕 AI 领域的“多少”(how much)方面。例如,论文发表数量、参会人数、创业投资等。
技术表现(Technical Performance)
这部分围绕 AI 表现“有多好”(how much)的方面。例如,计算机理解图像和证明定理的性能。
衍生测量(Derivative Measures)
我们对各个趋势之间的关系进行探究。还引入了一种探索性的方法,即AI 活力指数(AI Vibrancy Index),将学术界和行业的AI 趋势结合起来,对AI领域的现状进行量化。
接近人类表现(Towards Human Performance)
我们列举了 AI 在接近或超越人类表现方面取得的重大进展,以及当中遇到的困难与挑战。
活动量丨Volume of Activity
学术界
1. 论文发表数量
自 1996 年以来,计算机科学领域的论文数量增长了 6 倍,但在同一时期,每年发表的 AI 论文数量增加 了 9 倍。
以下学术论文的 Scopus 数据库中所收录,关键词为“人工智能”的计算机科学论文发表数量。
2. 选课人数
自1996年以来,斯坦福大学的 AI 课程选课人数增加了 11 倍。
机器学习(ML)是 AI 的一个分支。在这里之所以强调机器学习课程,是因为其选课人数的激增,而且机器学习技术对最近许多 AI 成果至关重要。
下图为斯坦福大学的 AI 和机器学习课程的选课人数。
由于其他大学的数据有限,因此在报告中突出斯坦福的数据。但是根据参考数据,可以推测其他大学的趋势与斯坦福类似。
3. 参会情况
以下为 AI 会议的参会人数。
研究重点转移,大型 AI 会议(1000人以上)中,研究重点已经从符号推理转向机器学习和深度学习。
但是在小型 AI 会议(1000人以下)中,符号推理方面仍在稳步发展。
行业
1. AI 创业公司
以下为风投资本支持的 AI 创业公司数量。自 2000 年以来,这一数量增加了 14倍。
2. AI 创业基金
在美国投资 AI 创业的基金数量也在增长,自 2000 年以来,每年投入 AI 创业的资本增加了 6 倍:
3. 职位需求
根据两个在线求职平台 Indeed 和 Monster 的数据,AI 相关岗位需求也在增长。自 2013 年以来,在美国需要 AI 技能的工作岗位已经增长了4.5 倍。
根据 Indeed 的数据,不同国家需要 AI 技能的工作岗位也在增加。
Monster 平台发布每年 AI 相关工作职位的数据,按具体技能划分。
4. 机器人进口
下面是产业自动化的情况。北美和全球的工作机器人购买量在增加。
开源软件
GitHub 项目统计
以下是 GitHub 上,TensorFlow 和 Scikit-Learn 软件包获得的星标(star)数量。(TensorFlow 和 Scikit-Learn 是用于进行深度学习和机器学习的热门软件包。)
以下是 Github 上其他 AI 和 ML 软件包的星标情况。
公共认知
媒体报道
关于 AI 的主流媒体文章报道中,含有正面情绪(蓝线)和负面情绪(紫线)的文章比例。
技术表现丨Technical Performance
视觉
1. 物体检测
大型视觉识别挑战(LSVRC)比赛中,AI 系统检测物体的性能也在显著提升。自 2010 年以来,错误率从 28.5 %下降到低于 2.5%。
2. 视觉问答
视觉问答(Visual Question Answering),是一种涉及计算机视觉和自然语言处理的学习任务。以下为在开放式回答有关图像问题的任务中,AI 系统的性能。
自然语言理解
1. 句法分析
AI 系统在确定句子句法结构上的表现。
2. 机器翻译
AI 系统在翻译英语和德语方面的表现。
3. 问答
AI 系统在文档中找到问题答案的性能。
4. 语音识别
AI 系统在识别语音录音的表现,2016 已经达到人类水平。
结语
这份报告中有以下亮点:
· 学术领域:自1996 年以来,AI 论文发表量增加了 9 倍;同时相关课程的选课人数也在增长。例如,斯坦福大学的 AI 课程选课人数比 20 年前,增加了 11 倍。
· 产业领域:自 2000 年以来,有资本支持的 AI 创业公司数量增长了 14 倍。针对AI 创业的投资在同一时期增加了 6 倍。
· 技术表现:AI 在图像和语音识别上都逐渐接近人类水平。AI 系统在针对现实问题的应用上表现出色,例如物体检测、理解和回答、图像分类等方面。
· 接近人类表现:AI 在某些方面已经能够接近人类的表现。比如在游戏应用中,AI 在国际象棋、围棋等方面都有不俗的表现。尽管如此,但当中也存在一些困难和挑战,比如在处理信息的深层含义方面,AI 与人类表现仍有一定的差距。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15