
sql中插值法完成缺失数据的填充
从Excel中导入了一批数据到Sqlserver,但因为原始数据不全,中间有些数据漏掉了。比如下面这种情况。ID为2的so数据为0。ID为3,4的co1数据缺失了,暂时用0代替。
ID so co1
1 0.1 0.1
2 0 0.2
3 0.2 0
4 0.25 0
5 0.2 0.4
使用差值法将这些缺失的数据补齐。插值计算方法如下:(也可以不使用这两个步骤,只要最后的结果一致就行)
步骤一:计算缺失值上下的已知值间的斜率:
k = (b2 - b1)/(n + 1) n 为缺失数据的个数
步骤二:计算对应的缺失值
a(i) = b1 + k * i
经过处理后,得到的数据是这样的:
ID so co1
1 0.1 0.1
2 0.15 0.2
3 0.2 0.27
4 0.25 0.33
5 0.2 0.4
现在希望在sqlserver中写一个存储过程,自动完成上述过程。
so,co1为原始表的字段,这样的字段一共有七八个。所以一次可以只考虑一个字段的缺失值填充。
b2 b1是缺失数据前后的正常数据。比如
ID co1
1 0.1
2 0.2
3 0
4 0
5 0.4
这里b2为ID=5,b1为ID=2的数据。b2和b1需要在sql过程中去判断。
k是插值的斜率
i为第几个缺失数据。比如这里在填充ID为3,co1的数据时,i=1。填充ID为4,co1的数据时,i=2。
---------
SQL 语句
方法通过排序的方式求得的@NUM1和@NUM2,但缺失数据多的时候,不再适用了啊。
IF OBJECT_ID('TB') IS NOT NULL DROP TABLE TB
IF OBJECT_ID('FUN_SO') IS NOT NULL DROP FUNCTION FUN_SO
IF OBJECT_ID('FUN_CO1') IS NOT NULL DROP FUNCTION FUN_CO1
GO
CREATE TABLE TB(
ID INT,
SO NUMERIC(19,2),
CO1 NUMERIC(19,2)
)
INSERT INTO TB
SELECT 1, 0.1, 0.1 union all
SELECT 2, 0, 0.2 union all
SELECT 3, 0.2, 0 union all
SELECT 4, 0, 0 union all
SELECT 5, 0, 0.4 union all
SELECT 6, 0.1, 0.5
GO
CREATE FUNCTION FUN_SO(@ID INT)
RETURNS NUMERIC(19,2)
AS
BEGIN
DECLARE @NUM1 NUMERIC(19,2),@ID1 INT,@NUM2 NUMERIC(19,2),@ID2 INT
SELECT TOP 1 @ID1=ID , @NUM1=SO FROM TB WHERE ID<=@ID AND SO<>0 ORDER BY ID DESC
SELECT TOP 1 @ID2=ID , @NUM2=SO FROM TB WHERE ID>=@ID AND SO<>0 ORDER BY ID ASC
IF @ID2<>@ID1
RETURN @NUM1+(((@NUM2-@NUM1)/(@ID2-@ID1))*(@ID-@ID1))
RETURN @NUM1
END
GO
CREATE FUNCTION FUN_CO1(@ID INT)
RETURNS NUMERIC(19,2)
AS
BEGIN
DECLARE @NUM1 NUMERIC(19,2),@ID1 INT,@NUM2 NUMERIC(19,2),@ID2 INT
SELECT TOP 1 @ID1=ID , @NUM1=CO1 FROM TB WHERE ID<=@ID AND CO1<>0 ORDER BY ID DESC
SELECT TOP 1 @ID2=ID , @NUM2=CO1 FROM TB WHERE ID>=@ID AND CO1<>0 ORDER BY ID ASC
IF @ID2<>@ID1
RETURN @NUM1+(((@NUM2-@NUM1)/(@ID2-@ID1))*(@ID-@ID1))
RETURN @NUM1
END
GO
SELECT ID,DBO.FUN_SO(ID),DBO.FUN_CO1(ID) FROM TB
/*
10.100.10
20.150.20
30.200.27
40.170.33
50.130.40
60.100.50
*/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11