
sql中插值法完成缺失数据的填充
从Excel中导入了一批数据到Sqlserver,但因为原始数据不全,中间有些数据漏掉了。比如下面这种情况。ID为2的so数据为0。ID为3,4的co1数据缺失了,暂时用0代替。
ID so co1
1 0.1 0.1
2 0 0.2
3 0.2 0
4 0.25 0
5 0.2 0.4
使用差值法将这些缺失的数据补齐。插值计算方法如下:(也可以不使用这两个步骤,只要最后的结果一致就行)
步骤一:计算缺失值上下的已知值间的斜率:
k = (b2 - b1)/(n + 1) n 为缺失数据的个数
步骤二:计算对应的缺失值
a(i) = b1 + k * i
经过处理后,得到的数据是这样的:
ID so co1
1 0.1 0.1
2 0.15 0.2
3 0.2 0.27
4 0.25 0.33
5 0.2 0.4
现在希望在sqlserver中写一个存储过程,自动完成上述过程。
so,co1为原始表的字段,这样的字段一共有七八个。所以一次可以只考虑一个字段的缺失值填充。
b2 b1是缺失数据前后的正常数据。比如
ID co1
1 0.1
2 0.2
3 0
4 0
5 0.4
这里b2为ID=5,b1为ID=2的数据。b2和b1需要在sql过程中去判断。
k是插值的斜率
i为第几个缺失数据。比如这里在填充ID为3,co1的数据时,i=1。填充ID为4,co1的数据时,i=2。
---------
SQL 语句
方法通过排序的方式求得的@NUM1和@NUM2,但缺失数据多的时候,不再适用了啊。
IF OBJECT_ID('TB') IS NOT NULL DROP TABLE TB
IF OBJECT_ID('FUN_SO') IS NOT NULL DROP FUNCTION FUN_SO
IF OBJECT_ID('FUN_CO1') IS NOT NULL DROP FUNCTION FUN_CO1
GO
CREATE TABLE TB(
ID INT,
SO NUMERIC(19,2),
CO1 NUMERIC(19,2)
)
INSERT INTO TB
SELECT 1, 0.1, 0.1 union all
SELECT 2, 0, 0.2 union all
SELECT 3, 0.2, 0 union all
SELECT 4, 0, 0 union all
SELECT 5, 0, 0.4 union all
SELECT 6, 0.1, 0.5
GO
CREATE FUNCTION FUN_SO(@ID INT)
RETURNS NUMERIC(19,2)
AS
BEGIN
DECLARE @NUM1 NUMERIC(19,2),@ID1 INT,@NUM2 NUMERIC(19,2),@ID2 INT
SELECT TOP 1 @ID1=ID , @NUM1=SO FROM TB WHERE ID<=@ID AND SO<>0 ORDER BY ID DESC
SELECT TOP 1 @ID2=ID , @NUM2=SO FROM TB WHERE ID>=@ID AND SO<>0 ORDER BY ID ASC
IF @ID2<>@ID1
RETURN @NUM1+(((@NUM2-@NUM1)/(@ID2-@ID1))*(@ID-@ID1))
RETURN @NUM1
END
GO
CREATE FUNCTION FUN_CO1(@ID INT)
RETURNS NUMERIC(19,2)
AS
BEGIN
DECLARE @NUM1 NUMERIC(19,2),@ID1 INT,@NUM2 NUMERIC(19,2),@ID2 INT
SELECT TOP 1 @ID1=ID , @NUM1=CO1 FROM TB WHERE ID<=@ID AND CO1<>0 ORDER BY ID DESC
SELECT TOP 1 @ID2=ID , @NUM2=CO1 FROM TB WHERE ID>=@ID AND CO1<>0 ORDER BY ID ASC
IF @ID2<>@ID1
RETURN @NUM1+(((@NUM2-@NUM1)/(@ID2-@ID1))*(@ID-@ID1))
RETURN @NUM1
END
GO
SELECT ID,DBO.FUN_SO(ID),DBO.FUN_CO1(ID) FROM TB
/*
10.100.10
20.150.20
30.200.27
40.170.33
50.130.40
60.100.50
*/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09