京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sql中插值法完成缺失数据的填充
从Excel中导入了一批数据到Sqlserver,但因为原始数据不全,中间有些数据漏掉了。比如下面这种情况。ID为2的so数据为0。ID为3,4的co1数据缺失了,暂时用0代替。
ID so co1
1 0.1 0.1
2 0 0.2
3 0.2 0
4 0.25 0
5 0.2 0.4
使用差值法将这些缺失的数据补齐。插值计算方法如下:(也可以不使用这两个步骤,只要最后的结果一致就行)
步骤一:计算缺失值上下的已知值间的斜率:
k = (b2 - b1)/(n + 1) n 为缺失数据的个数
步骤二:计算对应的缺失值
a(i) = b1 + k * i
经过处理后,得到的数据是这样的:
ID so co1
1 0.1 0.1
2 0.15 0.2
3 0.2 0.27
4 0.25 0.33
5 0.2 0.4
现在希望在sqlserver中写一个存储过程,自动完成上述过程。
so,co1为原始表的字段,这样的字段一共有七八个。所以一次可以只考虑一个字段的缺失值填充。
b2 b1是缺失数据前后的正常数据。比如
ID co1
1 0.1
2 0.2
3 0
4 0
5 0.4
这里b2为ID=5,b1为ID=2的数据。b2和b1需要在sql过程中去判断。
k是插值的斜率
i为第几个缺失数据。比如这里在填充ID为3,co1的数据时,i=1。填充ID为4,co1的数据时,i=2。
---------
SQL 语句
方法通过排序的方式求得的@NUM1和@NUM2,但缺失数据多的时候,不再适用了啊。
IF OBJECT_ID('TB') IS NOT NULL DROP TABLE TB
IF OBJECT_ID('FUN_SO') IS NOT NULL DROP FUNCTION FUN_SO
IF OBJECT_ID('FUN_CO1') IS NOT NULL DROP FUNCTION FUN_CO1
GO
CREATE TABLE TB(
ID INT,
SO NUMERIC(19,2),
CO1 NUMERIC(19,2)
)
INSERT INTO TB
SELECT 1, 0.1, 0.1 union all
SELECT 2, 0, 0.2 union all
SELECT 3, 0.2, 0 union all
SELECT 4, 0, 0 union all
SELECT 5, 0, 0.4 union all
SELECT 6, 0.1, 0.5
GO
CREATE FUNCTION FUN_SO(@ID INT)
RETURNS NUMERIC(19,2)
AS
BEGIN
DECLARE @NUM1 NUMERIC(19,2),@ID1 INT,@NUM2 NUMERIC(19,2),@ID2 INT
SELECT TOP 1 @ID1=ID , @NUM1=SO FROM TB WHERE ID<=@ID AND SO<>0 ORDER BY ID DESC
SELECT TOP 1 @ID2=ID , @NUM2=SO FROM TB WHERE ID>=@ID AND SO<>0 ORDER BY ID ASC
IF @ID2<>@ID1
RETURN @NUM1+(((@NUM2-@NUM1)/(@ID2-@ID1))*(@ID-@ID1))
RETURN @NUM1
END
GO
CREATE FUNCTION FUN_CO1(@ID INT)
RETURNS NUMERIC(19,2)
AS
BEGIN
DECLARE @NUM1 NUMERIC(19,2),@ID1 INT,@NUM2 NUMERIC(19,2),@ID2 INT
SELECT TOP 1 @ID1=ID , @NUM1=CO1 FROM TB WHERE ID<=@ID AND CO1<>0 ORDER BY ID DESC
SELECT TOP 1 @ID2=ID , @NUM2=CO1 FROM TB WHERE ID>=@ID AND CO1<>0 ORDER BY ID ASC
IF @ID2<>@ID1
RETURN @NUM1+(((@NUM2-@NUM1)/(@ID2-@ID1))*(@ID-@ID1))
RETURN @NUM1
END
GO
SELECT ID,DBO.FUN_SO(ID),DBO.FUN_CO1(ID) FROM TB
/*
10.100.10
20.150.20
30.200.27
40.170.33
50.130.40
60.100.50
*/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17