
详解Python中的各种函数的使用
函数是有组织的,可重复使用的代码,用于执行一个单一的,相关的动作的块。函数为应用程序和代码重用的高度提供了更好的模块。
正如我们知道的,Python的print()等许多内置函数,但也可以创建自己的函数。这些函数称为用户定义函数。
定义一个函数
可以定义函数,以提供所需的功能。下面是简单的规则来定义Python函数。
函数块以开始关键字def后跟函数名和括号中(())。
任何输入参数或参数应该放在这些括号内。还可以定义这些括号内的参数。
函数的第一个语句可以是??一个可选的声明 - 该函数或文档字符串的文档字符串。
每个函数中的代码块以冒号(:)开头并缩进。
该语句返回[表达式]退出功能,可选地传递回一个表达式给调用者。不带参数return语句返回None。
语法:
def functionname( parameters ):
"function_docstring"
function_suite
return [expression]
默认情况下,参数具有一个位置的行为和需要,它们被定义为通知他们以相同的顺序。
例子:
这是最简单的Python函数形式。这个函数接受一个字符串作为输入参数,并打印标准的屏幕上。
def printme( str ):
"This prints a passed string into this function"
print str
return
调用函数
定义一个函数只给出它的名称,指定要被包括在功能和结构的代码块的参数。
一旦函数的基本结构确定后,可以通过从其他函数或直接从Python提示符调用它执行它。以下是示例调用printme()函数:
#!/usr/bin/python
# Function definition is here
def printme( str ):
"This prints a passed string into this function"
print str;
return;
# Now you can call printme function
printme("I'm first call to user defined function!");
printme("Again second call to the same function");
当执行上面的代码中,产生以下结果:
I'm first call to user defined function!
Again second call to the same function
引用VS值传递
所有参数(参数)在Python语言是通过引用传递。这意味着,如果你在一个函数中改变了一个参数的值,变化也反映了在调用函数中。例如:
#!/usr/bin/python
# Function definition is here
def changeme( mylist ):
"This changes a passed list into this function"
mylist.append([1,2,3,4]);
print "Values inside the function: ", mylist
return
# Now you can call changeme function
mylist = [10,20,30];
changeme( mylist );
print "Values outside the function: ", mylist
这里,我们保持传递的对象的参考,并在同一个对象附加的值。这样,这将产生以下结果:
Values inside the function: [10, 20, 30, [1, 2, 3, 4]]
Values outside the function: [10, 20, 30, [1, 2, 3, 4]]
还有就是参数通过引用传递和引用被覆盖在被调用的函数里面一个例子。
#!/usr/bin/python
# Function definition is here
def changeme( mylist ):
"This changes a passed list into this function"
mylist = [1,2,3,4]; # This would assig new reference in mylist
print "Values inside the function: ", mylist
return
# Now you can call changeme function
mylist = [10,20,30];
changeme( mylist );
print "Values outside the function: ", mylist
参数myList上局部函数changeme。更改函数内mylist不影响mylist。函数没有作用,最后这会产生以下结果:
Values inside the function: [1, 2, 3, 4]
Values outside the function: [10, 20, 30]
函数参数:
可以通过使用形参的类型如下调用函数:
必需的参数
关键字参数
默认参数
可变长度参数
必需的参数:
所需的参数为传递给正确的位置顺序的函数的参数。这里,在函数调用的参数的数目应与函数定义完全匹配。
调用函数printme(),一定要传递一个参数,否则会如下给出一个语法错误:
#!/usr/bin/python
# Function definition is here
def printme( str ):
"This prints a passed string into this function"
print str;
return;
# Now you can call printme function
printme();
当执行上面的代码,产生以下结果:
Traceback (most recent call last):
File "test.py", line 11, in <module>
printme();
TypeError: printme() takes exactly 1 argument (0 given)
关键字参数:
关键字参数是关系到函数调用。当在一个函数调用中使用关键字参数,调用者通过参数名称标识的参数。
这可以跳过参数或脱离顺序,因为Python解释器能够使用提供的参数使用匹配的值的关键字。还可以使关键字调用在以下方面printme()函数:
#!/usr/bin/python
# Function definition is here
def printme( str ):
"This prints a passed string into this function"
print str;
return;
# Now you can call printme function
printme( str = "My string");
当执行上面的代码中,产生以下结果:
My string
下面的例子给出了更清晰的画面。请注意,这里跟参数秩序没有关系。
#!/usr/bin/python
# Function definition is here
def printinfo( name, age ):
"This prints a passed info into this function"
print "Name: ", name;
print "Age ", age;
return;
# Now you can call printinfo function
printinfo( age=50, name="miki" );
当执行上面的代码,产生以下结果:
Name: miki
Age 50
默认参数:
默认参数是,假设一个默认值,如果不提供的函数调用的参数值的参数。下面的例子给出了默认参数一个主意,它会默认打印age,如果不通过传值:
#!/usr/bin/python
# Function definition is here
def printinfo( name, age = 35 ):
"This prints a passed info into this function"
print "Name: ", name;
print "Age ", age;
return;
# Now you can call printinfo function
printinfo( age=50, name="miki" );
printinfo( name="miki" );
当执行上面的代码,产生以下结果:
Name: miki
Age 50
Name: miki
Age 35
可变长度参数:
可能需要处理函数比在定义函数指定多个参数。这些参数被称为可变长度参数,在函数定义没有被命名,不像必需默认参数。
非关键字可变参数的函数的一般语法是这样的:
def functionname([formal_args,] *var_args_tuple ):
"function_docstring"
function_suite
return [expression]
星号(*)被放置,将持有的所有非关键字变量参数的值在变量名前。该元组保持为空,如果函数调用期间没有指定任何其他参数。下面是一个简单的例子:
#!/usr/bin/python
# Function definition is here
def printinfo( arg1, *vartuple ):
"This prints a variable passed arguments"
print "Output is: "
print arg1
for var in vartuple:
print var
return;
# Now you can call printinfo function
printinfo( 10 );
printinfo( 70, 60, 50 );
当执行上面的代码,产生以下结果:
Output is:
10
Output is:
70
60
50
匿名函数:
可以使用lambda关键字来创建小的匿名函数。这些函数被称为匿名,因为它们不是以标准方式通过使用def关键字声明。
Lambda形式可以采取任何数量的参数,但在表现形式上只返回一个值。它们不能包含命令或多个表达式。
匿名函数不能直接调用打印,因为需要lambda表达式。
lambda函数都有自己的命名空间,并且不能访问变量高于在其参数列表和那些在全局命名空间等。
尽管似乎lambda是一个函数的单行版本,它们不是在C或C++,其宗旨是通过调用出于性能原因在传递函数的堆栈分配相当于一行的声明。
语法
lambda函数的语法仅包含单个语句,如下:
?
1
lambda [arg1 [,arg2,.....argn]]:expression
以下为例子来说明函数lambda形式是如何工作的:
#!/usr/bin/python
# Function definition is here
sum = lambda arg1, arg2: arg1 + arg2;
# Now you can call sum as a function
print "Value of total : ", sum( 10, 20 )
print "Value of total : ", sum( 20, 20 )
当执行上面的代码,产生以下结果:
Value of total : 30
Value of total : 40
return语句:
该语句返回[表达式]退出功能,可选地传递回一个表达式给调用者。不带参数return语句返回None。
以上所有的例子都没有返回任何值,但如果喜欢,可以从一个函数返回值:
#!/usr/bin/python
# Function definition is here
def sum( arg1, arg2 ):
# Add both the parameters and return them."
total = arg1 + arg2
print "Inside the function : ", total
return total;
# Now you can call sum function
total = sum( 10, 20 );
print "Outside the function : ", total
当执行上面的代码,产生以下结果:
Inside the function : 30
Outside the function : 30
变量的作用域:
程序中的所有变量可能不会在该程序中的所有位置进行访问。这取决于所声明的变量。
变量的作用域确定了程序,可以访问一个特定的标识符的一部分。在Python中的变量两个基本范畴:
全局变量
局部变量
全局与局部变量:
这是一个函数体内部定义的变量具有局部范围,而那些之外定义具有全局范围。
局部变量只能在函数内部被声明和访问,而全局变量可以在整个程序主体由所有函数进行访问。当调用一个函数,它里面声明的变量都纳入范围。下面是一个简单的例子:
#!/usr/bin/python
total = 0; # This is global variable.
# Function definition is here
def sum( arg1, arg2 ):
# Add both the parameters and return them."
total = arg1 + arg2; # Here total is local variable.
print "Inside the function local total : ", total
return total;
# Now you can call sum function
sum( 10, 20 );
print "Outside the function global total : ", total
当执行上面的代码,产生以下结果:
Inside the function local total : 30
Outside the function global total : 0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29