京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何快速掌握逆天可视化神器Power BI
Power BI是微软最新的商业智能(BI)概念,它包含了一系列的组件和工具。话不多说,先上图:
是不是一下就明白了Power BI系列组件的功能?其实Power BI的核心理念就是让我们用户不需要强大的技术和编程背景,针对在如同客户经理、产品经理、网络运营、市场营销等岗位上,只需要掌握Excel这样简单的工具就能快速上手商业数据分析及可视化。
微软的Power BI主要含有四套插件,包含Power Query,Power Pivot,Power view和Power map。
一、Power Query
Power Query是负责抓取和整理数据的,它可以抓取几乎市面上所有格式的源数据,然后再按照我们需要的格式整理出来。通过Power Query 我们可以快速将多个数据源的数据合并、追加到一起,任意组合数据、将数据进行分组、透视等整理操作。而且这些步骤将来是自动完成的,也就是说以后你只要点下刷新,所有的数据就都乖乖的按照你的要求到碗里来了,再也不需要手工调整数据了…感动到哭…
1.合并/追加表
2.数据分组
3. 透视/逆透视
二、Power Pivot
Power Pivot是微软Power BI 系列工具的大脑,负责建模分析。有人说它是过去20年Excel里最好的新功能。它可以
1.轻松处理各种量级的数据
2. 快速建立多表关系,再也不用vlookup了
3.看看生成的数据透视表报告:
三、Power View
Power View是嵌套在Excel里的交互式图表工具,只用Excel也可以制作高大上的仪表板。
四、Power Map
号称Excel地表最强可视化神器,Power Map是直接嵌套在Excel里的基于地图的可视化工具,效果如下图:
那么,如此炫酷的神器 Power BI 要怎么学?
CDA数据分析员-电子表格大会主席、微软Excel MVP(Excel最有价值专家)李奇老师手把手带你零基础入门商业智能分析。
在这里,你可以学到迅速提升数据分析技能,分分钟做出亮眼的商业数据分析报表。
一、课程安排
北京&远程:2017年12月02~03日 09~10(周末四天)
上海远程:2017年12月02~03日 09~10日
深圳远程:2017年12月02~03日 09~10日
课程费用:现场班1500元,远程班900元
授课安排:
(1) 授课方式:面授直播两种形式,中文多媒体互动式授课方式
(2) 授课时间:上午9:00-12:00,下午13:30-16:30,16:30-17:00(答疑)
(3) 学习期限:现场与视频结合,长期学习加练习答疑。
二、报名流程
1. 在线填写报名信息
微信端:
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
三、讲师介绍
李奇
微软Excel MVP(Excel最有价值专家)/经管之家签约讲师/中国电子表格应用大会主席
IBM中国担任销售管理团队数据分析项目组长及德勤北京所的数据分析高级咨询顾问。专精于企业数据分析、制定商业智能业务解决方案、软件开发及Excel培训等。
四、课程大纲
第一阶段:[12.02] EXCEL基础与数据处理方法介绍
1.数据分析概述
2.分析工具Excel概述
3.Excel基本数据类型操作
4.Excel公式功能与条件格式
5.Excel数据透视与图表功能
6.常用函数介绍
7.Excel数据处理(错误值、异常值、重复)
8.数据提取与数据分组
9.数据转换与数据标准化
第二阶段:[12.03]EXCEL商业智能分析工具精讲
1.Power Map介绍
2.Power View介绍
3.Power Query介绍
4.导入数据与数据横向、纵向合并
5.基本功能介绍与M函数
6.Power Pivot介绍
7.导入外部数据与搭建多维数据集
8.KPI多层次结构介绍
9.DAX表达式与高级数据透视分析
第三阶段:[12.09]高级数据可视化方法精讲
1.基本可视化分析方法
2.应用切片器及透视表制作动态图表
3.应用控件及名称定义制作动态图表
4.制作单元格图表
5.制作嵌套图表
6.基本图表再创新
第四阶段:[12.10]Excel商业智能分析案例精讲、浅谈VBA与统计
1.财务杜邦分析仪介绍
2.餐饮行业数据分析仪介绍
3.销售管理分析仪介绍
4.浅谈Excel VBA
5.浅谈描述性统计分析
6.浅谈回归分析方法
五、优惠信息
1. 论坛其他现场班老学员9折优惠;
2. 同一单位三人及以上报名9折优惠;
3. 同时报名参加LEVELⅠ立减400元;
4. 同时报名CDA数据分析师-周末集训班课程立减500元。
2. 针对在校大学生,大一大二学生的双方实行专业共建合作,并接受河北地质大学的大三大四学生的实训外派。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06