
Python使用中文正则表达式匹配指定中文字符串的方法示例
本文实例讲述了Python使用中文正则表达式匹配指定中文字符串的方法。分享给大家供大家参考,具体如下:
业务场景:
从中文字句中匹配出指定的中文子字符串 .这样的情况我在工作中遇到非常多, 特梳理总结如下.
难点:
处理GBK和utf8之类的字符编码, 同时正则匹配Pattern中包含汉字,要汉字正常发挥作用,必须非常谨慎.推荐最好统一为utf8编码,如果不是这种最优情况,也有酌情处理.
往往一个具有普适性的正则表达式会简化程序和代码的处理,使过程简洁和事半功倍,这往往是高手和菜鸟最显著的差别。
示例一:
从QQ纯真数据库中解析出省市县等特定词语,这里的正则表达式基本能够满足业务场景,懒惰匹配?非常必要,因为处理不好,会得不到我们想要的效果。个中妙处,还请各位看官自己琢磨,我这里只点到为止!
代码如下:
#!/usr/bin/env python
#encoding: utf-8
#description: 从字符串中提取省市县等名称,用于从纯真库中解析解析地理数据
import re
import sys
reload(sys)
sys.setdefaultencoding('utf8')
#匹配规则必须含有u,可以没有r
#这里第一个分组的问号是懒惰匹配,必须这么做
PATTERN = \
ur'([\u4e00-\u9fa5]{2,5}?(?:省|自治区|市))([\u4e00-\u9fa5]{2,7}?(?:市|区|县|州)){0,1}([\u4e00-\u9fa5]{2,7}?(?:市|区|县)){0,1}'
data_list = ['北京市', '陕西省西安市雁塔区', '西班牙', '北京市海淀区', '黑龙江省佳木斯市汤原县', '内蒙古自治区赤峰市',
'贵州省黔南州贵定县', '新疆维吾尔自治区伊犁州奎屯市']
for data in data_list:
data_utf8 = data.decode('utf8')
print data_utf8
country = data
province = ''
city = ''
district = ''
#pattern = re.compile(PATTERN3)
pattern = re.compile(PATTERN)
m = pattern.search(data_utf8)
if not m:
print country + '|||'
continue
#print m.group()
country = '中国'
if m.lastindex >= 1:
province = m.group(1)
if m.lastindex >= 2:
city = m.group(2)
if m.lastindex >= 3:
district = m.group(3)
out = '%s|%s|%s|%s' %(country, province, city, district)
print out
运行截图
示例二:
从ip138中获取指定ip的地理位置等信息。
ip138是我们日常使用较多的ip查询网站,我为了获取每个ip对应的isp信息,需要查询这个页面
我在网上搜索了很久,没有找到ip138返回json之类的接口,只能以这种方式查询,那么我们不可避免地需要解析出上图中红框标注的isp信息。如果使用DOM解析指定div标签之类的常规思路恐怕不太凑效,更简捷的方式是使用中文正则匹配,直接从返回的html中得到“本站主数据:”那部分的信息。
下面是我摸索的代码
#!/usr/bin/env python
#encoding: utf-8
#date: 2016-03-31
#note: 测试中遇到的问题,请求指定的链接会有超时现象,可以多请求几次
import requests, re
import sys
reload(sys)
sys.setdefaultencoding('utf8')
IP138_API = 'http://www.ip138.com/ips138.asp?ip='
PATTERN = ur'<li>本站主数据:(.*?)</li>'
def query_api(url):
data = ''
r = requests.get(url)
if r.status_code == 200:
data = r.content
return data
def parse_ip138(html):
#只能是unicode编码,不能在后面再转换为utf-8,否则无法正则匹配上.
html = unicode(html, 'gb2312')
#html = unicode(html, 'gb2312').encode('utf-8')
#print html
pattern = re.compile(PATTERN)
m = pattern.search(html)
if m:
print m.group(1)
else:
print 'regex match failed'
if __name__ == '__main__':
url = IP138_API + '14.192.60.0'
resp = query_api(url)
if not resp:
print 'no content'
parse_ip138(resp)
下面是截图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16