京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【每周一期-数据蒋堂】从SQL语法看离散性
所谓离散性,是指集合的成员可以游离在集合之外存在并参与运算,游离成员还可以再组成新的集合。从离散性的解释上可以知道,离散性是针对集合而言的一种能力,离开集合概念单独谈离散性就没有意义了。
离散性是个很简单的特性,几乎所有支持结构(对象)的高级语言都天然支持,比如我们用Java时都可以把数组成员取出来单独计算,也可以再次组成新的数组进行集合运算(不过Java几乎没有提供集合运算类库)。
但是SQL的离散性却很差。
SQL体系中有记录的概念,但并没有显式的记录数据类型。单条记录被SQL作为只有一条记录的临时表处理,也就是个单成员的集合。而且,SQL从表(集合)中取出记录时总是复制出一条新记录,和原表中的记录已经没有关系了,这个特性被称为immutable。immutable特性有助于保证代码的正确性和简单性,但也会丧失离散性。
缺失离散性会带来代码的繁琐和效率的低下。
比如要计算张三和李四的年龄差和工资差,SQL要写成两句:
SELECT (SELECT age FROM employee WHERE name='张三') - ( SELECT age FROM employee WHERE name='李四') FROM dual
SELECT (SELECT salary FROM employee WHERE name='张三') - ( SELECT salary FROM employee WHERE name='李四') FROM dual
这不仅书写麻烦,而且要重复查询。
如果支持较好的离散性,我们可以写成这样:
a = employee.select@1(name="张三")
b = employee.select@1(name="李四")
agediff=a.age-b.age
salarydiff=a.salary-b.salary
查询结果可以游离在集合外独立存在,并可以反复使用。
immutable特性会要求每次运算都复制数据,这在只读的运算中还只是浪费时间和空间影响效率,但如果要改写数据时,造成的麻烦就严重得多。
比如我们想对业绩在前10%销售员再给予5%的奖励。一个正常思路是先把业绩在前10%的销售员找出来,形成一个中间集合,然后再针对这个集合的成员执行奖励5%的动作。但由于SQL缺乏离散性,immutable特性导致满足条件的记录再形成的集合和原记录是无关的,在中间结果集上做修改没有意义。这样就迫使我们要把整个动作写成一个语句,直接在原表中找到满足条件的记录再加以修改,而前10%这种条件并不容易简单地在WHERE子句中写出来,这又会导致复杂的子查询。这还只是个简单例子,现实应用中比这复杂的条件比比皆是,用子查询也很难写出,经常采用的办法则是先把满足条件的记录的主键计算出来,再用这些主键到原表中遍历找到原记录去修改,代码繁琐且效率极为低下。
如果语言支持离散性,我们就可以执行上述思路了:
a=sales.sort@z(amount).to(sales.len()*0.1) //取出前业绩在10%的记录构成一个新集合
a.run(amount=amount*1.05) //针对集合成员执行奖励5%动作
从上面两个简单例子可以看出,缺失离散性会加剧分步计算的困难,immutable特性会降低性能并占用空间。当然,离散性的问题还不止于此。
不能用原集合的成员构成新集合再进行计算,SQL在做分组时无法保持分组子集,必须强迫聚合,作为集合化语言,SQL的集合化并不彻底。没有游离记录及其集合的表示方法,只能用传统的外键方案表示数据之间的关联关系,写出的代码即繁琐又难懂,而且运算性能还差,缺乏离散性的SQL无法采用直观的引用机制描述关联。特别地,没有离散性的支持,SQL很难描述有序计算,有序计算是离散性和集合化的典型结合产物,成员的次序在集合中才有意义,这要求集合化,有序计算时又要将每个成员与相邻成员区分开,会强调离散性。
这些具体内容我们会在后续文档中逐步详细说明。我们要从理论上改进SQL(或者更合适的说法是关系代数),主要工作就是在保持集合化的基础上引入离散性,从而解决上述问题,让新的语言能够同时拥有SQL和Java的优点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22