京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据、人工智能、机器人,有什么血缘关系
大数据、人工智能(AI)、机器人、算法、深度学习、物联网、传感器……,这些名词似乎每天都会看到或听到,当人们还搞不清楚是什么时,媒体已不断报导人类的工作将很快被取代,让人们愈来愈焦虑。
我跟大家有一样的疑惑,但是信息科学始终对我有份致命的吸引力。可能因为我的第一份工作,是当了4年的程序设计师。去年,我才毅然放下工作,去美国加州大学进修大数据预测科学。因为长期从事品牌营销与消费者沟通,所以想用一些简单的语言,帮大家厘清这些名词的关系。
为什么机器人很厉害?因为它们装上了大脑,也就是人工智能。但是人工智能也有优劣,就跟人一样,IQ有高低之别。机器人厉不厉害,就看它的人工智能好不好。所以,如果没有人工智能,机器人就只是“机器”而已,不是“人”。
人工智能如何变厉害?要喂它“吃”大数据。大数据就像人工智能的食物,跟人类一样,吃进去的食物愈新鲜、愈干净,人工智能就愈健康。
人工智能如何消化那么多数据?这就要靠算法了。算法就是机器人的消化系统,负责读取、消化大数据,同时产出结果。
所以,算法是关键。但算法也有很多种,有预测分析的算法、各类统计算法、深度学习的算法等等。每个会写程序的人,都可能创造自己的算法,因此有高低优劣之分。好的算法,会造就聪明的大脑,也就是聪明的人工智能,以及高IQ的机器人。
现代企业如何搜集大数据?除了传统的ERP(企业资源计划管理系统)、CRM(客户关系管理系统)之外,新的趋势是靠网络、物联网、传感器,这些就是机器人的手脚。
物联网并不是新概念。传统零售业的POS(销售时点情报系统)与计算机相连,就是物联网的例子。现在,所有你想到的东西都可以连上计算机,例如,运动鞋垫连上网络,可提供运动频率、里程数、健康状况;工厂设备也可以连上网,随时提供生产的数据、良率及设备运转状况。家中的各类家电连上网后,让你随时掌握家里的动态、谁出去、何时回来、开关各类家电等等。
人类的工作到底会不会被替代?Google创办的奇点大学教授JeremyHoward担心,未来80%的工作可能被人工智能机器人取代,从无人商店、互联网法庭、帮医生读X光片辨认肿瘤、计算机问诊开处方、大数据抓恐怖分子等等。若证诸这并非诳语,那么人类未来将何去何从?
根据目前的发展,人工智能机器人有一项技能还学不会,就是“问对问题”。例如Google可以针对各种问题提供解答,却无法问出一个你需要的问题。所以,未来学习“如何问对问题”,比“给对答案”重要,这也将是你最重要的价值!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01