
在Python中定义和使用抽象类的方法
提起Java的抽象类大家都比较熟悉,Python中我们可以使用abc模块来构建抽象类,这里就为大家讲解在Python中定义和使用抽象类的方法
像java一样python也可以定义一个抽象类。
在讲抽象类之前,先说下抽象方法的实现。
抽象方法是基类中定义的方法,但却没有任何实现。在java中,可以把方法申明成一个接口。而在python中实现一个抽象方法的简单的方法是:
class Sheep(object):
def get_size(self):
raise NotImplementedError
任何从Sheep继承下来的子类必须实现get_size方法。否则就会产生一个错误。但这种实现方法有个缺点。定义的子类只有调用那个方法时才会抛错。这里有个简单方法可以在类被实例化后触发它。使用python提供的abc模块。
import abc
class Sheep(object):
__metaclass__ = abc.ABCMeta
@abc.absractmethod
def get_size(self):
return
这里实例化Sheep类或任意从其继承的子类(未实现get_size)时候都会抛出异常。
因此,通过定义抽象类,可以定义子类的共同method(强制其实现)。
如何使用抽象类
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def load(self, input):
return
@abc.abstractmethod
def save(self, output, data):
return
通过ABCMeta元类来创建一个抽象类, 使用abstractmethod装饰器来表明抽象方法
注册具体类
class B(object):
def load(self, input):
return input.read()
def save(self, output, data):
return output.write(data)
A.register(B)
if __name__ == '__main__':
print issubclass(B, A) # print True
print isinstance(B(), A) # print True
从抽象类注册一个具体的类
子类化实现
class C(A):
def load(self, input):
return input.read()
def save(self, output, data):
return output.write(data)
if __name__ == '__main__':
print issubclass(C, A) # print True
print isinstance(C(), A) # print True
可以使用继承抽象类的方法来实现具体类这样可以避免使用register. 但是副作用是可以通过基类找出所有的具体类
for sc in A.__subclasses__():
print sc.__name__
# print C
如果使用继承的方式会找出所有的具体类,如果使用register的方式则不会被找出
使用__subclasshook__
使用__subclasshook__后只要具体类定义了与抽象类相同的方法就认为是他的子类
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def say(self):
return 'say yeah'
@classmethod
def __subclasshook__(cls, C):
if cls is A:
if any("say" in B.__dict__ for B in C.__mro__):
return True
return NotTmplementd
class B(object):
def say(self):
return 'hello'
print issubclass(B, A) # True
print isinstance(B(), A) # True
print B.__dict__ # {'say': <function say at 0x7f...>, ...}
print A.__subclasshook__(B) # True
不完整的实现
class D(A):
def save(self, output, data):
return output.write(data)
if __name__ == '__main__':
print issubclass(D, A) # print True
print isinstance(D(), A) # raise TypeError
如果构建不完整的具体类会抛出D不能实例化抽象类和抽象方法
具体类中使用抽象基类
import abc
from cStringIO import StringIO
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def retrieve_values(self, input):
pirnt 'base class reading data'
return input.read()
class B(A):
def retrieve_values(self, input):
base_data = super(B, self).retrieve_values(input)
print 'subclass sorting data'
response = sorted(base_data.splitlines())
return response
input = StringIO("""line one
line two
line three
""")
reader = B()
print reader.retrieve_values(input)
打印结果
base class reading data
subclass sorting data
['line one', 'line two', 'line three']
可以使用super来重用抽象基类中的罗辑, 但会迫使子类提供覆盖方法.
抽象属性
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractproperty
def value(self):
return 'should never get here.'
class B(A):
@property
def value(self):
return 'concrete property.'
try:
a = A()
print 'A.value', a.value
except Exception, err:
print 'Error: ', str(err)
b = B()
print 'B.value', b.value
打印结果,A不能被实例化,因为只有一个抽象的property getter method.
Error: ...
print concrete property
定义抽象的读写属性
import abc
class A(object):
__metaclass__ = abc.ABCMeta
def value_getter(self):
return 'Should never see this.'
def value_setter(self, value):
return
value = abc.abstractproperty(value_getter, value_setter)
class B(A):
@abc.abstractproperty
def value(self):
return 'read-only'
class C(A):
_value = 'default value'
def value_getter(self):
return self._value
def value_setter(self, value):
self._value = value
value = property(value_getter, value_setter)
try:
a = A()
print a.value
except Exception, err:
print str(err)
try:
b = B()
print b.value
except Exception, err:
print str(err)
c = C()
print c.value
c.value = 'hello'
print c.value
打印结果, 定义具体类的property时必须与抽象的abstract property相同。如果只覆盖其中一个将不会工作.
error: ...
error: ...
print 'default value'
print 'hello'
使用装饰器语法来实现读写的抽象属性, 读和写的方法应该相同.
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractproperty
def value(self):
return 'should never see this.'
@value.setter
def value(self, _value):
return
class B(A):
_value = 'default'
@property
def value(self):
return self._value
@value.setter
def value(self, _value):
self._value = _value
b = B()
print b.value # print 'default'
b.value = 'hello'
print b.value # print 'hello'
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18