
Python中的对象,方法,类,实例,函数用法分析
这篇文章主要介绍了Python中的对象,方法,类,实例,函数用法,从面向对象的角度分析了对象,方法,类,实例,函数等的使用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
Python是一个完全面向对象的语言。不仅实例是对象,类,函数,方法也都是对象。
这段代码实际上创造了两个对象,Foo和foo。而Foo同时又是一个类,foo是这个类的实例。
在C++里类型定义是在编译时完成的,被储存在静态内存里,不能轻易修改。在Python里类型本身是对象,和实例对象一样储存在堆中,对于解释器来说类对象和实例对象没有根本上的区别。
在Python中每一个对象都有自己的命名空间。空间内的变量被存储在对象的__dict__里。这样,Foo类有一个__dict__, foo实例也有一个__dict__,但这是两个不同的命名空间。
所谓“定义一个类”,实际上就是先生成一个类对象,然后执行一段代码,但把执行这段代码时的本地命名空间设置成类的__dict__. 所以你可以写这样的代码:
所谓“定义一个函数”,实际上也就是生成一个函数对象。而“定义一个方法”就是生成一
个函数对象,并把这个对象放在一个类的__dict__中。下面两种定义方法的形式是等价的:
>>> print Foo.qux, Foo.__dict__['qux']
>>> foo = Foo()
>>> foo.bar()
2
>>> foo.qux()
3
而类继承就是简单地定义两个类对象,各自有不同的__dict__:
复杂的地方在`.`这个运算符上。对于类来说,Stilton.taste的意思是“在Stilton.__dict__中找'taste'.
如果没找到,到父类Cheese的__dict__里去找,然后到父类的父类,等等。如果一直到object仍没找到,那么扔一个AttributeError.”
实例同样有自己的__dict__:
不管__init__()是在哪儿定义的, stilton.__dict__与类的__dict__都无关。
Cheese.weight和Stilton.weight都会出错,因为这两个都碰不到实例的命名空间。而
stilton.weight的查找顺序是stilton.__dict__ => Stilton.__dict__ =>
Cheese.__dict__ => object.__dict__. 这与Stilton.taste的查找顺序非常相似,仅仅是
在最前面多出了一步。
方法稍微复杂些。
>>> print Cheese.get_weight
>>> print stilton.get_weight
<__main__.Stilton object at 0x7ff820669190>>
我们可以看到点运算符把function变成了unbound method. 直接调用类命名空间的函数和点
运算返回的未绑定方法会得到不同的错误:
但这两个错误说的是一回事,实例方法需要一个实例。所谓“绑定方法”就是简单地在调用方法时把一个实例对象作为第一个参数。下面这些调用方法是等价的:
最后一种也就是平常用的调用方式,stilton.get_weight(),是点运算符的另一种功能,将stilton.get_weight()翻译成stilton.get_weight(stilton).
这样,方法调用实际上有两个步骤。首先用属性查找的规则找到get_weight, 然后将这个属性作为函数调用,并把实例对象作为第一参数。这两个步骤间没有联系。比如说你可以这样试:
先查找weight这个属性,然后将weight做为函数调用。但weight是字符串,所以出错。要注意在这里属性查找是从实例开始的:
但是
Stilton.get_weight的查找跳过了实例对象stilton,所以查找到的是没有被覆盖的,在Cheese中定义的方法。
getattr(stilton, 'weight')和stilton.weight是等价的。类对象和实例对象没有本质区别,getattr(Cheese, 'smell')和Cheese.smell同样是等价的。getattr()与点运算符相比,好处是属性名用字符串指定,可以在运行时改变。
__getattribute__()是最底层的代码。如果你不重新定义这个方法,object.__getattribute__()和type.__getattribute__()就是getattr()的具体实现,前者用于实例,后者用以类。换句话说,stilton.weight就是object.__getattribute__(stilton, 'weight'). 覆盖这个方法是很容易出错的。比如说点运算符会导致无限递归:
__getattribute__()中还有其它的细节,比如说descriptor protocol的实现,如果重写很容易搞错。
__getattr__()是在__dict__查找没找到的情况下调用的方法。一般来说动态生成属性要用这个,因为__getattr__()不会干涉到其它地方定义的放到__dict__里的属性。
由于方法只不过是可以作为函数调用的属性,__getattr__()也可以用来动态生成方法,但同样要注意无限递归:
>>> print stilton.get_weight()
100g
>>> print stilton.age
Traceback (most recent call last):
File "", line 1, in
File "", line 12, in __getattr__
AttributeError: age
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10