京公网安备 11010802034615号
经营许可证编号:京B2-20210330
举例讲解Python中字典的合并值相加与异或对比
这里我们来举例讲解Python中字典的合并值相加与异或对比,以不同的字典为对象来进行操作,,需要的朋友可以参考下
字典合并值相加
在统计汇总游戏数据的时候,有些数据是是每天用字典存的,当我要对多天汇总的时候,就需要合并字典了。
如果key相同的话它们的值就相加。
不能用update方法,因为用update方法则相同的key的值会覆盖,而不是相加。
千言不如一码。
def union_dict(*objs):
_keys = set(sum([obj.keys() for obj in objs],[]))
_total = {}
for _key in _keys:
_total[_key] = sum([obj.get(_key,0) for obj in objs])
return _total
obj1 = {'a':1,'b':2,'c':3}
obj2 = {'a':1,'b':3,'d':4}
print union_dict(obj1,obj2)
输出
{'a': 2, 'c': 3, 'b': 5, 'd': 4}
sum([obj.keys() for obj in objs],[])这句可能不太好理解。
其实sum()函数也有"鲜为人知的参数",即第2个参数,start参数,默认是0。
而且不止可以是int类型,还可以是其他支持+操作符的东西,比如[]。
利用这一点,可以对二层数组打平成一层。
比如
>>sum([[1,2,3],[4,5]],[])
[1,2,3,4,5]
对字典diff("异或")
在游戏中,我要监控记录物品系统中的背包变动情况。("异或"的结果是相同的消除,剩下不同的,即变动的)
假设背包的存储结构是这样的。
是一个字典,{物品id:数量}。
在背包类初始化的时候,把背包物品信息copy保存到一个oldbag变量,进行一些物品操作后(比如使用物品,领取物品奖励等),在调用save()方法存进redis时,对新的bag字典与oldbag字典进行差异对比就得出变动情况了。
千言不如一码。
def symmetric_difference(_oldobj,_newobj):
_oldkeys = _oldobj.keys()
_newkeys = _newobj.keys()
_diff = {}
for _key in set(_oldkeys + _newkeys):
_val = _newobj.get(_key,0) - _oldobj.get(_key,0)
if _val:
_diff[_key] = _val
return _diff
oldobj = {'a':1,'b':2,'c':3}
newobj = {'a':1,'b':3,'d':4}
print symmetric_difference(oldobj,newobj)
输出
{'b': 1, 'd': 4,'c': -3}
代表玩家得到了1个'b'物品,4个'd'物品,失去了3个'c'物品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05