京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS变量视图:变量属性(含新建变量属性)
一、度量标准:(度量、序号、名义)
您可以将测量级别指定为刻度(定距或者定比刻度上的数值数据)、有序或名义。名义数据和有序数据可以是字符串(字母数字)或数值。
1)标定(名义):当变量值表示不具有内在等级的类别时,该变量可以作为名义变量;例如,雇员任职的公司部门。名义变量的示例包括地区、邮政编码和宗教信仰等。
2)有序(序号):当变量值表示带有某种内在等级的类别时,该变量可以作为有序变量;例如,从十分不满意到十分满意的服务满意度水平。有序变量的示例包括表示满意度或可信度的态度分数和优先选择评分。
3)刻度(度量):当变量值表示带有有意义的度规的已排序类别时,该变量可以作为刻度(连续)变量对待,以便在值之间进行合适的距离比较。刻度变量的示例包括以年为单位的年龄和以千美元为单位的收入。
注意:对于有序字符串变量,将假定字符串值的字母顺序反映了类别的真实顺序。例如,对于具有low、medium、high值的字符串变量,类别的顺序将解释为high、low、medium,这个顺序是错误的。通常,使用数值代码代表有序数据更为可靠。
二、缺失值
缺失值将指定数据值定义为用户缺失值。例如,您想要区分因对象拒绝回答问题造成的数据缺失与由于问题不适于该对象而未回答所引起的数据缺失。将指定为用户缺失值的数据值标记为进行特殊处理,并将其从大多数计算中排除。
三、角色
某些对话框支持可用于预先选择分析变量的预定义角色。当打开其中一个对话框时,满足角色要求的变量将自动显示在目标列表中。可用角色包括:
1、输入:变量将用作输入(例如,预测变量、自变量)。
2、目标:变量将用作输出或目标(例如,因变量)。
3、两者:变量将同时用作输入和输出。
4、无:变量没有角色分配。
5、分区:变量将用于将数据划分为单独的训练、检验和验证样本。
6、拆分
四、定制变量属性
1、概念:除了标准变量属性(如值标签、缺失值、测量级别)之外,还可以自己创建定制的变量属性。因此,您可以创建识别调查问题响应类型的变量属性(例如,单选、多选、填空)或计算变量使用的公式。
2、操作:数据-新建设定属性
3、说明:◎定制变量属性的名称用方括号括起。◎以美元符号开头的属性名是保留名称,不能修改这些名称。◎空单元格表示该变量没有属性;单元格中显示为Empty的文本表示该变量具有属性,但还没有为该变量的属性赋值。在单元格中输入文本后,该变量即拥有了具有您所输入的值的属性。◎在单元格中显示的数组...表示此属性是属性数组,即包含多个值的属性。单击单元格中的按钮以显示值列表。
五、自定义变量视图
1、概念:您可以使用自定义变量视图控制变量视图中显示的属性(例如,名称、类型、标签)及其显示顺序。
2、操作:视图-自定义变量视图。
3、说明:◎选择(选中)要显示的变量属性。◎使用向上和向下箭头按钮更改属性的显示顺序。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22