京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS生存函数-Kaplan-Meier
一、Kaplan-Meier生存分析(分析-生存函数-Kaplan-Meier)
1、概念:在多数情况下,您都会希望考察两个事件之间的时间分布,比如雇用时长(员工从雇用到离开公司的时间)。但是,这种数据通常包含一些已审查的个案。已审查的个案是没有记录其第二次事件的个案(例如,在调查结束后仍然为公司工作的员工)。Kaplan-Meier过程是已审查的个案出现时估计时间事件模型的一种方法。Kaplan-Meier模型的依据是估计事件发生的每个时间点的条件概率,并取这些概率的乘积限估计每个时间点的生存率。
2、示例。新的AIDS疗法在延长寿命方面是否具有治疗优势?您可以对两组AIDS患者进行研究,一组接受传统疗法,另一组接受实验性疗法。从数据构造Kaplan-Meier模型将允许您比较两组的整体生存率,以确定实验性疗法是否是传统疗法的改进。还可以用图来表示生存或风险函数并对其进行直观比较,以获得更详细的信息。
3、统计量。生存表,包括时间、状态、累积生存和标准误、累积事件和剩余数;以及均值和中位数生存时间,带有标准误和95%置信区间。图:生存、风险、对数生存和1减生存。
4、数据。时间变量应为连续变量,状态变量可以是分类变量或连续变量,因子和层次变量应为分类变量。
5、假设。所关心事件的概率应只取决于初始事件之后的时间(假设绝对时间下的概率不变)。即,从不同时间开始研究的个案(比如,从不同时间开始接受治疗的患者)应有相似的行为。已审查的个案和未审查的个案之间也不应存在系统性差别。例如,如果许多已审查的个案都是情况更为严重的患者,则得到的结果可能会存在偏差。
6、相关过程。Kaplan-Meier过程使用的计算寿命表的方法估计每个事件发生时的生存或风险函数。“寿命表”过程使用保险精算方法进行生存分析,该方法依赖于将观察期划分为较小的时间区间,可能对处理大样本有用。如果您怀疑变量与要控制的生存时间或变量(协变量)相关,则应使用“Cox回归”过程。如果同一个个案中协变量在不同的时间点可以具有不同的值,则应使用带有“依时协变量”的“Cox回归”。
二、比较因子水平(分析-生存函数-Kaplan-Meie-比较因子)
您可以请求统计量以检验因子不同水平的生存分布的等同性。可用统计量包括对数秩、Breslow和Tarone-Ware。选择一个选项指定要进行的比较:跨层整体检验、分层检验、跨层成对检验或分层成对检验。◎对数秩.比较生存分布的等同性的检验。在此检验中,所有时间点均赋予相同的权重。◎Breslow.比较生存分布的等同性的检验。在每个时间点用带风险的个案数对时间点加权。◎Tarone-Ware.比较生存分布的等同性的检验。在每个时间点用历险的个案数的平方根对时间点加权。◎在层上比较所有因子水平.在单次检验中比较所有因子水平,以检验生存曲线的相等性。◎在层上成对比较因子水平.比较每一个相异的因子水平对。不提供成对趋势检验。◎对于每层.对每层的所有因子水平的相等性执行一次单独的检验。如果您没有分层变量,则不执行检验。◎为每层成对比较因子水平.比较每一层的每一个相异的因子水平对。不提供成对趋势检验。如果您没有分层变量,则不执行检验。
因子级别的线性趋势。允许您检验跨因子级别的线性趋势。此选项仅可用于因子水平的整体(而不是成对)比较。
三、保存(分析-生存函数-Kaplan-Meie-保存)
您可以将Kaplan-Meier表的信息保存为新变量,新变量可在以后的分析中用于检验假设或检查假设。您可以将生存函数、生存函数的标准误、危险函数和累积事件保存为新变量。◎生存.累积生存概率估计。默认变量名为前缀sur_加上顺序号。例如,如果已存在sur_1,Kaplan-Meier就分配变量名sur_2。◎生存函数的标准误.累积生存估计的标准误。默认变量名为前缀se_加上顺序号。例如,如果已存在se_1,Kaplan-Meier就分配变量名se_2。◎危险函数.累积风险函数估计。默认变量名为前缀haz_加上顺序号。例如,如果已存在haz_1,Kaplan-Meier就分配变量名haz_2。◎累积事件.当个案按其生存时间和状态代码进行排序时的事件累积频率。默认变量名为前缀cum_加上顺序号。例如,如果已存在cum_1,Kaplan-Meier就分配变量名cum_2
四、选项(分析-生存函数-Kaplan-Meie-选项)
1、统计量。您可以选择为计算的生存函数显示统计量,包括生存分析表、均值和中位数生存时间以及四分位数。如果包含因子变量,则会为每组生成单独的统计量。
通过图可以直观地检查生存函数、1减去生存函数、危险函数和取生存函数的对数。如果包含因子变量,则会为每组绘制函数图。◎生存.在线性刻度上显示累积生存函数。◎1减去生存函数.以线性尺度绘制1减生存函数。◎危险函数.在线性刻度上显示累积风险函数。◎取生存函数的对数.在对数刻度上显示累积生存函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27