
SPSS分析:Bootstrap
一、原理:
非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法,也称为自助法。其核心思想和基本步骤如下:
1、采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。
2、根据抽出的样本计算给定的统计量T。
3、重复上述N次(一般大于1000),得到N个统计量T。
4、计算上述N个统计量T的样本方差,得到统计量的方差。
应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。
具体抽样方法举例:想要知道池塘里面鱼的数量,可以先抽取N条鱼,做上记号,放回池塘。进行重复抽样,抽取M次,每次抽取N条,考察每次抽到的鱼当中有记号的比例,综合M次的比例,在进行统计量的计算。
二、支持的过程
1、频率
◎统计表支持均值、标准差、方差、中位数、偏度、峰度和百分位数的bootstrap估计。◎频率表支持百分比的bootstrap估计。
2、描述性
◎描述统计表支持均值、标准差、方差、偏度和峰度的bootstrap估计。
3、探索
◎描述表支持均值、5%切尾均值、标准差、方差、中位数、偏度、峰度和内距的bootstrap估计。◎M估计量表支持Huber的M估计量、Tukey的双权重、Hampel的M估计量和Andrew的Wave的bootstrap估计。◎百分位数表支持百分位数的bootstrap估计。
4、交叉表
◎定向测量表支持Lambda、Goodman和Kruskal Tau、不定性系数和Somers的d的bootstrap估计。◎对称度量表支持Phi、Cramer的V、列联系数、Kendall的tau-b、Kendall的tau-c、Gamma、Spearman相关性和Pearson的R的bootstrap估计。◎风险评估表支持几率比的bootstrap估计。◎Mantel-Haenszel一般几率比表支持ln(Estimate)的bootstrap估计和显著性检验。
5、均值
◎报告表支持均值、中位数、组内中位数、标准差、方差、峰度、偏度、调和均值和几何均值的bootstrap估计。
6、单样本T检验
◎统计表支持均值和标准差的bootstrap估计。◎检验表支持平均值差值的bootstrap估计和显著性检验。
7、独立样本T检验
◎组统计表支持均值和标准差的bootstrap估计。◎检验表支持平均值差值的bootstrap估计和显著性检验。
8、配对样本T检验
◎统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。◎检验表支持均值的bootstrap估计。
9、单因素方差分析
◎描述统计表支持均值和标准差的bootstrap估计。◎多重比较表支持平均值差值的bootstrap估计。◎对比检验表支持对比值的bootstrap估计和显著性检验。
10、GLM单变量
◎描述统计表支持均值和标准差的bootstrap估计。◎参数估计值表支持系数、B的bootstrap估计和显著性检验。◎对比结果表支持差值的bootstrap估计和显著性检验。◎估计边际均值:估计值表支持均值的bootstrap估计。◎估计边际均值:成对比较表支持平均值差值的bootstrap估计。◎两两比较检验:多重比较表支持平均值差值的bootstrap估计。
11、双变量相关
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。
12、偏相关
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。
13、线性回归
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。◎模型概要表支持Durbin-Watson的bootstrap估计。◎系数表支持系数、B的bootstrap估计和显著性检验。◎相关系数表支持相关性的bootstrap估计。◎残差统计表支持均值和标准差的bootstrap估计。
14、Ordinal回归
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
15、判别分析
◎标准化典则判别函数系数表支持标准化系数的bootstrap估计。◎典则判别函数系数表支持非标准化系数的bootstrap估计。◎分类函数系数表支持系数的bootstrap估计。
16、GLM多变量
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
17、线性混合模型
◎固定效应估计值表支持估计值的bootstrap估计和显著性检验。◎协方差参数估计值表支持估计值的bootstrap估计和显著性检验。
18、Generalized Linear Models
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
19、Cox回归
◎方程中的变量表支持系数、B的bootstrap估计和显著性检验。
20、二元Logistic回归
◎方程中的变量表支持系数、B的bootstrap估计和显著性检验。
21、多项Logistic回归
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17