
大数据形势危急 如何建设安全防护体系
大数据应用在现在的应用范围越来广,对于它的重要性也得到了越来越多人的认可,大事大数据的安全问题却又给大数据应用带来一个头痛等的问题。在现代网络环境下,网络安全问题不可避免。棱镜门”事件就揭露了网络数据被监听的事实,暴露出国家安全、网络安全形势严峻。无论数据被恶意代码破坏,还是被黑客监听,最终都使得安全问题回归到了安全体系如何建设这样一个根本命题。
安全现状
地下黑色产业链的发展,使得制作黑客工具、控制用户终端、盗取用户信息、滥用互联网资源、攻击受害系统等行为形成产业化,并快速壮大,对互联网安全造成严峻挑战。
新型安全攻击方式增长迅猛,传统技术难以应对。利用0Day进行攻击案例迅速增长,而APT攻击方式向更加多维化的方向发展,综合运用各类攻击手段的能力、复杂度继续提升。
网络IP化、IPv6、云、物联网的智能化发展趋势,产生了更为复杂的安全问题。
运营商网络往往规模庞大,安全脆弱点多,安全体系建设难以达到更好的效果,在这样的网络结构下,运营商骨干网、短信系统长期受到攻击,获取用户信息,难以发现,国家安全部门发现运营商重要系统中被植入特种木马的事例也逐渐增多,在这种安全趋势下,新的安全威胁对旧的安全体系发起了挑战。
基于P2DR安全模型的早期安全防护体系
早期的安全体系建设就是基于P2DR模型,包括4个主要部分:策略、防护、检测和响应。
策略(Policy):根据风险分析产生的安全策略描述了系统中哪些资源要得到保护,以及如何实现对它们的保护等。策略是模型的核心,所有的防护、检测和响应都是依据安全策略实施的。
防护(Protection):通过修复系统漏洞、正确设计开发和安装系统来预防安全事件的发生;通过定期检查来发现可能存在的系统脆弱性;通过教育等手段,使用户和操作员正确使用系统,防止意外威胁;通过访问控制、监视等手段来防止恶意威胁。采用的防护技术通常包括数据加密、身份认证、访问控制、授权和虚拟专用网(VPN)技术、防火墙、安全扫描和数据备份等。
检测(Detection):是动态响应和加强防护的依据,通过不断地检测和监控网络系统,来发现新的威胁和弱点,通过循环反馈来及时做出有效的响应。当攻击者穿透防护系统时,检测功能就发挥作用,与防护系统形成互补。
响应(Response):系统一旦检测到入侵,响应系统就开始工作,进行事件处理。响应包括紧急响应和恢复处理,恢复处理又包括系统恢复和信息恢复。
该安全体系的好处是基于风险评估理论,将安全看做一个动态的整体。通过策略与响应来使得安全问题形成闭环,但是该安全体系并没有对安全威胁的本质进行分析,是安全体系的初级阶段的产物。
基于该安全体系,产生了一些如防火墙、入侵检测等初期的安全产品。
基于木桶原理的近期安全防护体系
随着安全威胁的不断发展和对安全理解的不断加深,人们开始对安全本质进行思考,出现了基于木桶原理的安全防护体系。
木桶原理简单的说就是整个系统的安全系数取决于最弱一环,即短板理论,因此整个安全体系的建设就是寻找整个网络的所有安全边界,然后将这些安全边界进行防护,避免安全短板的出现。
安全领域近10年的时间都是靠边界思想来指导安全体系建设,用网关防护类产品确定网络入口的安全边界,用网络版防病毒确定终端的安全边界,用系统加固系统确定服务器的安全边界,用STANDARDIZATION风险管理制度确定人的安全边界。
传统的安全防护思想就是基于木桶理论为用户构建一个完整的线式防御体系,但是攻击却是点式的,任何一点被攻陷,整个安全体系就会崩溃,因此基于目前的理论基础,安全体系建设本身就是一个花费大量力气,但成效却不好的举措。这会使安全的成本变得极其昂贵。
基于大数据安全的下一代安全防护体系
基于木桶理论的安全体系属于被动的威胁防御思想。事实上,真正有效的安全体系是基于主动的威胁发现思想,主动出击,主动感知威胁。
即不管网络的安全风险点有多少个,威胁入侵只有两条路径,一条是从外网向内网的威胁入侵路径,一条是从内网向外网的威胁扩散路径。从外网向内网威胁入侵的最经典事件是黑客攻击和APT攻击,而从内网向外网威胁扩散的最经典事件是U盘病毒。从理论上看,只要对这两条关键威胁路径进行监测和管控,就能遏制威胁产生的态势,以最小的安全成本解决企业的安全问题。而基于大数据安全的云端边界的安全模型,能够很好地解决这一安全问题。
云端边界的安全防御体系,是为了适应新的威胁的下一代的智能防御体系,整个体系包括大数据安全、边界安全和端安全3个关键部分。
大数据安全是指基于大数据技术构建的安全威胁捕获和分析平台。分为公有云和私有云两部分。在互联网环境下,使用公有云,对于隔离网环境,则使用私有云。边界安全是指基于大数据安全技术的未知威胁发现技术。端安全是指基于大数据安全技术的终端的安全管理与防护系统。
大数据安全就是我们常说的云安全体系,基于终端的木马感知云,将大量的可疑样本收集到安全云中,首先进行海量样本分拣,然后将分拣后的样本放入恶意软件分析流水线,最终将分析后的样本进行黑白名单的分类,然后将产生的大数据安全数据提供给云查杀引擎使用。由于该系统是一个生态的自循环系统,因此可以在最短的时间内发现世界上新产生的威胁,将这些威胁分析整理,用于边界防护和端防护。能够对企业网络进行很好安全防御。
总结
运营商的网络规模庞大,结构复杂,如果采用传统的基于木桶理论的边界防护的安全体系,无疑是一件不可完成的任务。而基于大数据安全的下一代安全防护体系,则能够利用有限的成本迅速发现新的威胁,有效地解决网络的安全问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26