
运营商大数据变现需要新思维
电信行业近年来受OTT、管道化、资费调整等因素的影响,受到的冲击很大,传统业务利润下滑趋势明显。未来要寻求新的增长点,一定是从数据资产的角度出发。运营商守着数据的金矿,如何从里面挖掘出一桶桶货真价实的黄金,这是未来发展的重要方向。
从能力角度分析,电信行业属于整体IT实力比较强的行业,也最早开始挖掘、发现数据的价值。经过15到20年的发展,特别是以经营分析为核心的数据平台的发展,运营商内部的能力建设已经趋于成熟,数据质量、数据治理、数据标准,这些关乎资产自身质量的工作,基本上已经做得比较成熟。运营商有资本沉下心来考虑,到底利用数据来做什么。
目前运营商有三种数据可以形成变现。第一种是业务交易数据、流程性数据、交互式数据。从变现形式来看,第一个层面,就是能力平台,比如位置平台、信用平台,这些都是运营商基于自己的数据做的一些能力组件。像银行在用位置平台的时候,可以用来选址,可以看用户的流动;交通部门可以看到用户乘坐汽车、地铁的情况。这都是能力平台的变现。
第二种是分析能力的变现,比如行业的分析报告,运营商基于自身的数据可以形成银行业、房地产业、零售业的报告等。另外,运营商还可以做出一些针对性的报告,比如某银行的市场竞争分析报告等。
第三种是合作运营。运营商一直想做的其实是运营的变现,运营商利用海量的数据,为第三方用户提供定制化运营的服务,收入按一定比例进行分成。这种是相当于合作运营的方式。
大数据要有专门的部门去运营,必须打破信息孤岛、各自为政的组织架构,这在电信行业逐渐达成共识。以中国移动为例,中国移动已经考虑在省级公司建立大数据中心,大数据中心是省级公司的二级部门,集团也有类似的考量。这样的组织一旦确立,这个部门的职责,主要是做大数据的分析和运营。它的平台一级由原来的IT部门,比如业务支撑系统来承建,上层数据价值的释放、挖掘,以及对外怎样去变现,全部交由大数据中心这个新的部门来做。其KPI考核已经不再是用户新增数、用户保有量、用户收入ARPU等。其背负的KPI就是数据到底变成了多少钱。这样的KPI考核,就会推动这个部门每天都去考虑这些数据怎么变现,这将大大推动运营商大数据向其他行业的拓展。
大数据运营需要行之有效的商务模式,而目前无论是运营商,还是与之合作的企业、政府相关部门,都在进行尝试。姜欣表示,数据变现究竟是以包月的形式进行结算、以计件的形式进行结算,还是以联合运营的方式进行结算,目前运营商和第三方行业都在摸索的过程中,需要经过时间的沉淀,才能形成合适的方式。可能是一种,也可能是几种方式的组合。但不管是面向大客户、政府还是个人,这三方面如果都有市场,都得到了认可,也形成了固定的商业模式,那么未来运营商在数据资产变现上一定能够达到更好的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11