京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营商大数据变现需要新思维
电信行业近年来受OTT、管道化、资费调整等因素的影响,受到的冲击很大,传统业务利润下滑趋势明显。未来要寻求新的增长点,一定是从数据资产的角度出发。运营商守着数据的金矿,如何从里面挖掘出一桶桶货真价实的黄金,这是未来发展的重要方向。
从能力角度分析,电信行业属于整体IT实力比较强的行业,也最早开始挖掘、发现数据的价值。经过15到20年的发展,特别是以经营分析为核心的数据平台的发展,运营商内部的能力建设已经趋于成熟,数据质量、数据治理、数据标准,这些关乎资产自身质量的工作,基本上已经做得比较成熟。运营商有资本沉下心来考虑,到底利用数据来做什么。
目前运营商有三种数据可以形成变现。第一种是业务交易数据、流程性数据、交互式数据。从变现形式来看,第一个层面,就是能力平台,比如位置平台、信用平台,这些都是运营商基于自己的数据做的一些能力组件。像银行在用位置平台的时候,可以用来选址,可以看用户的流动;交通部门可以看到用户乘坐汽车、地铁的情况。这都是能力平台的变现。
第二种是分析能力的变现,比如行业的分析报告,运营商基于自身的数据可以形成银行业、房地产业、零售业的报告等。另外,运营商还可以做出一些针对性的报告,比如某银行的市场竞争分析报告等。
第三种是合作运营。运营商一直想做的其实是运营的变现,运营商利用海量的数据,为第三方用户提供定制化运营的服务,收入按一定比例进行分成。这种是相当于合作运营的方式。
大数据要有专门的部门去运营,必须打破信息孤岛、各自为政的组织架构,这在电信行业逐渐达成共识。以中国移动为例,中国移动已经考虑在省级公司建立大数据中心,大数据中心是省级公司的二级部门,集团也有类似的考量。这样的组织一旦确立,这个部门的职责,主要是做大数据的分析和运营。它的平台一级由原来的IT部门,比如业务支撑系统来承建,上层数据价值的释放、挖掘,以及对外怎样去变现,全部交由大数据中心这个新的部门来做。其KPI考核已经不再是用户新增数、用户保有量、用户收入ARPU等。其背负的KPI就是数据到底变成了多少钱。这样的KPI考核,就会推动这个部门每天都去考虑这些数据怎么变现,这将大大推动运营商大数据向其他行业的拓展。
大数据运营需要行之有效的商务模式,而目前无论是运营商,还是与之合作的企业、政府相关部门,都在进行尝试。姜欣表示,数据变现究竟是以包月的形式进行结算、以计件的形式进行结算,还是以联合运营的方式进行结算,目前运营商和第三方行业都在摸索的过程中,需要经过时间的沉淀,才能形成合适的方式。可能是一种,也可能是几种方式的组合。但不管是面向大客户、政府还是个人,这三方面如果都有市场,都得到了认可,也形成了固定的商业模式,那么未来运营商在数据资产变现上一定能够达到更好的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10