京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据环境下的多维分析技术
正是由于多维分析技术在业务分析系统的核心功能中的不可替代性,随着商业智能系统的深入应用,分析系统的数据量呈指数级增长,原有依赖硬盘IO处理性能(包括传统数据库、多维立方体文件)的多维分析技术遭遇到性能瓶颈。与此同时,随着服务器内存价格的下降,一种新的基于内存的OLAP技术架构出现了。这种新架构既能够保证类似于MOLAP方式的高性能,也能基于更大的数据量进行分析,还不用定期将数据库里的数据刷新到OLAP服务器来防止数据过期。这种新的体系架构当之无愧地成为大数据环境下搭建多维分析功能的流行选择,而IBM Cognos的Dynamic Cubes就是它的代表作。
动态立方体(Dynamic Cubes)作为一种新的技术架构最先应用在Cognos的10.2.0版本。下面我们以Cognos的11.0版本来看看怎样对动态立方体进行性能调优。
影响因素
动态立方体是以原有ROLAP技术为基础,使用服务器内存作缓存的一种新型技术架构。它的响应性能的影响因素包括。
数据仓库(数据集市):由于DynamicCubes的事实表数据都存储在数据仓库中,因此,有时数据仓库的性能好坏会影响前端多维分析查询的响应速度。在数据仓库的多维数据模型中,需要注意:
维表中的连接事实表的代理键的数据类型应该采用integer类型
维表中的各个层级的层级键的数据类型应该采用integer类型
2.数据库:提高数据库的查询性能,有助于提高最终多维分析展现的响应速度。
有时候多维分析的性能严重依赖于数据库运行大数据量多任务查询任务的性能
数据库基于的硬件资源(内存、CPU及IO)应该考虑到大数据量并行查询的性能,因此基于物理机的数据库性能当然比基于虚拟机的更优
尽量少用或者不用视图,因为视图的数据不是物理存在的
最好采用分析型的MPP数据库,因为多维分析都是针对大数据量的汇总查询
采用列存储技术的数据库对于大量并发并联查询性能更优
要确保查询性能最优化,可以通过数据库的性能分析监控、执行计划分析等工具
索引的设计,对于非MPP数据库,索引的设计对于查询性能影响很大
动态立方体性能调优
1.由于动态立方体使用机器内存和CPU进行性能增强,所以在对应用服务器的硬件进行评估时应该为将来的性能扩展留一定的预留空间。硬件评估可以通过Cognos提供的建模工具Cube Designer里的“评估硬件需求”功能初步估算。如下图所示。
2.在多维立方体模型设计时,使用模型验证功能,可以知道影响性能的问题所在。可能的问题有:连接字段类型、星形模型与雪花模型、过滤器的使用、视图的使用等等。如下图所示。

3.评估模型的复杂度。如果多维模型的维度和度量很多,数据量也很大,可以通过设计聚合表或者聚合内存来提升查询性能。动态立方体会通过聚合感知技术找到最合适的聚合数据集进行查询以提高查询性能。如下图所示。

4.JVM设置。动态立方体使用Java虚拟机作为内存管理的容器载体,所以Cognos也提供了一些JVM堆设置来优化数据查询性能。你可以在Cognos Administration界面上找到Query Service服务进行参数调整。如下图所示。

5.您还可以通过Cognos的Dynamic Query Analyzer (DQA)工具来对动态立方体的查询性能进行评估并得到优化建议。在进行评估之前,记得将Dynamic Cubes的工作日志打开,如下图所示。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16