京公网安备 11010802034615号
经营许可证编号:京B2-20210330
10年赚400倍的炒股策略 | python量化(附视频讲解)
给大家分享一个策略,一个在过去10年可以让你的本金翻400倍的选股策略。
这个策略简单到只用了一个选股条件。但是这个选股条件在茫茫多的其他条件当中,却是最强的一个。至少我个人寻寻觅觅了这么多年,回过头来发现,还是没有一个单独的选股条件比它更强。
记得很多人在2009年的时候就说过,这个选股条件在将来不会再有效了,要当心。但是这些人一再的被打脸。不好说2009年到现在的惊人收益,仅仅2016年,通过这个选股条件选出来的股票就涨了100%左右。试问有多少人跑赢了?
不再卖关子了,这个选股条件就是:小市值。本质上就是说,市值越小的股票,在将来上涨的概率越大。
可以将这个条件抽象为一个可以实际投资的策略:在每个月的月底,找出市值最小的10只股票,然后全仓等额买入。每月如此反复。
对,就是这么简单的一个策略,一个每个月只用交易一次其它时间只需要喝茶的策略,从2006年至2016年,11年期间,可以让你的原始资产翻400倍。
当然,现在小市值选股已经越来越成为行业公开的“秘密”,很多高大上的量化基金,背后的逻辑本质上就是简单的小市值选股。
策略知道的人多了,就谁都不能保证它将来可以继续赚钱,例如在2017年就出现了一些回调。
但另一方面,谁都不能保证它将来就不能赚钱。我们唯一知道的是,在过去近30年的A股市场上,它非常的赚钱。在过去100年的美国市场上,他也非常的赚钱。
我们还是回到python代码,下面讲讲我是如何用历史数据去验证这个策略的,用数据说话。
以下是我用到的数据截图。这个数据,包含了所有股票(包括退市)从上市至今每个月的数据,每一行就是一个股票在一个月的相关数据。数据总共约30M。
其中第四列的【是否交易】字段,含义是这个股票在当月的最后一个交易日是否交易。用于排除那些在月末最后一天停牌不能买入的股票。
第五列的【最后一天涨跌幅】字段,含义是这个股票在当月的最后一个交易日的涨跌幅。用于排除那些在月末最后一天涨停不能买入的股票。
接下来就是代码,加上注释、空格,总共也就50多行,python就是这么强大。

这是最终的资金曲线图,起点是1。其实是翻了467倍,接近500倍。同期沪深300指数作为benchmark,也就上涨了十几倍。
若对代码不是很理解的话,可以点击阅读原文观看视频,里面有关于以上代码的逐行讲解。
10年翻400倍的量化策略(上)
10年翻400倍的量化策略(下)
浅谈机器学习和量化投资(上)
浅谈机器学习和量化投资(下)
开发环境安装:Anaconda、PyCharm安装
课程内容介绍
量化投资介绍
量化投资学习方法、资料介绍(资料、数据)
为什么使用Python、Pandas
PyCharm教程
Python基本语法
股票数据的导入、导出
Pandas基础操作
案例:如何计算复权价
移动平均线策略(rolling方法)
择时策略框架
如何对代码进行封装
案例:如何处理停牌日期(apply、merge方法)
案例:日线转换成周线(resample方法)
案例:如何批量导入股票数据(append方法)
案例:如何存储股票数据(hdf5方式)
如何进行数据分组处理(group操作)
单因子、多因子选股策略
选股策略框架
评价模型的各类指标
如何获取实时股票数据
如何进行实盘交易
想要了解更多,扫码回复“python”添加微信好友,进入量化投资交流群。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29