
SPSS神经网络心得(二)
输出
网络结构。显示与神经网络有关的摘要信息。
• 描述。 显示与神经网络有关的信息,包括因变量、输入和输出单位数目、隐藏层和单位数目及激活函数。
• 图表。 将神经网络图表作为不可编辑图表显示。请注意,随着协变量数目和因子级别的增加,图表变得更加难于解释。
• 键结值。 显示表明给定层中的单位与以下层中的单位之间关系的系数估计值。键结值以培训样本为基础,即使活动数据集已划分为培训数据、检验数据和坚持数据。请注意,键结值数目会变得非常大,而且这些权重一般不用于解释网络结果。
网络性能。显示用于确定模型是否“良好”的结果。注意:该组中的图表以训练集和测试集组合为基础,或者如果不存在测试集,则只以训练集为基础。
• 模型摘要。 显示分区和整体神经网络结果的摘要,包括错误、相对错误或不正确预测的百分比、用于终止培训的中止规则和培训时间。恒等、sigmoid 或双曲正切激活函数应用于输出层时,错误为平方和错误。softmax 激活函数应用于输出层时,则为交叉熵错误。
• 分类结果。 分区和整体显示每个分类因变量的分类表。每个表针对每个因变量类别给出正确或错误分类的个案数目。也报告正确分类的总体个案百分比。
• ROC 曲线。 显示每个分类因变量的 ROC(Receiver Operating Characteristic)曲线。其也显示一个给定每个曲线下区域的表格。对于给定因变量,ROC 图表针对每个类别显示一条曲线。如果因变量有两个类别,那么每条曲线将该类别视为正态与其它类别。如果因变量有两个多类别,那么每条曲线将该类别视为正态与所有其它类别的汇总。
• 累积增益图。 显示每个分类因变量的累积增益图。每个因变量类别的曲线的显示与 ROC 曲线相同。
• 增益图。 显示每个分类因变量的增益图。每个因变量类别的曲线的显示与 ROC 曲线相同。
• 观察预测图。 显示每个因变量的观察预测值图表。针对分类因变量,显示每个响应类别的预测拟概率的复式箱图,并且观察响应类别为分群变量。针对刻度因变量,显示散点图。
• 残差分析图。 显示每个刻度因变量的残差分析值图表。残差和预测值之间不存在可见模式。此图表仅针对刻度因变量生成。
个案处理摘要。显示个案处理摘要表,其通过培训、检验和坚持样本整体总结分析中包含和排除的个案数。
自变量重要性分析。 执行敏感度分析,其计算确定神经网络的每个预测变量的重要性。此操作创建一个显示每个预测变量的重要性和标准化重要性的表和图表。请注意,如果存在大量预测变量或个案,敏感度分析需要进行大量计算并且很费时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15