
SPSS神经网络心得(二)
输出
网络结构。显示与神经网络有关的摘要信息。
• 描述。 显示与神经网络有关的信息,包括因变量、输入和输出单位数目、隐藏层和单位数目及激活函数。
• 图表。 将神经网络图表作为不可编辑图表显示。请注意,随着协变量数目和因子级别的增加,图表变得更加难于解释。
• 键结值。 显示表明给定层中的单位与以下层中的单位之间关系的系数估计值。键结值以培训样本为基础,即使活动数据集已划分为培训数据、检验数据和坚持数据。请注意,键结值数目会变得非常大,而且这些权重一般不用于解释网络结果。
网络性能。显示用于确定模型是否“良好”的结果。注意:该组中的图表以训练集和测试集组合为基础,或者如果不存在测试集,则只以训练集为基础。
• 模型摘要。 显示分区和整体神经网络结果的摘要,包括错误、相对错误或不正确预测的百分比、用于终止培训的中止规则和培训时间。恒等、sigmoid 或双曲正切激活函数应用于输出层时,错误为平方和错误。softmax 激活函数应用于输出层时,则为交叉熵错误。
• 分类结果。 分区和整体显示每个分类因变量的分类表。每个表针对每个因变量类别给出正确或错误分类的个案数目。也报告正确分类的总体个案百分比。
• ROC 曲线。 显示每个分类因变量的 ROC(Receiver Operating Characteristic)曲线。其也显示一个给定每个曲线下区域的表格。对于给定因变量,ROC 图表针对每个类别显示一条曲线。如果因变量有两个类别,那么每条曲线将该类别视为正态与其它类别。如果因变量有两个多类别,那么每条曲线将该类别视为正态与所有其它类别的汇总。
• 累积增益图。 显示每个分类因变量的累积增益图。每个因变量类别的曲线的显示与 ROC 曲线相同。
• 增益图。 显示每个分类因变量的增益图。每个因变量类别的曲线的显示与 ROC 曲线相同。
• 观察预测图。 显示每个因变量的观察预测值图表。针对分类因变量,显示每个响应类别的预测拟概率的复式箱图,并且观察响应类别为分群变量。针对刻度因变量,显示散点图。
• 残差分析图。 显示每个刻度因变量的残差分析值图表。残差和预测值之间不存在可见模式。此图表仅针对刻度因变量生成。
个案处理摘要。显示个案处理摘要表,其通过培训、检验和坚持样本整体总结分析中包含和排除的个案数。
自变量重要性分析。 执行敏感度分析,其计算确定神经网络的每个预测变量的重要性。此操作创建一个显示每个预测变量的重要性和标准化重要性的表和图表。请注意,如果存在大量预测变量或个案,敏感度分析需要进行大量计算并且很费时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28