京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何选择一份合适的数据科学工作
数据科学当之无愧是"21世纪最性感的工作"。本文我们介绍了数据科学相关的五种新兴职业,希望能帮助你选择适合自己的数据科学工作。
如今是数据科学的鼎盛时期...
· 世界各地的大学中最热门的新课程都在这个领域;
· 数据科学相关专业的毕业生的平均起薪为每年9万3千美元;
· 招聘广告中年薪为六位数的数据科学工作司空见惯。
数据科学当之无愧是”21世纪最性感的工作 “。
但是伴随着许多争议,很多人质疑将数据科学领域作为职业是否只是一时的风潮。是否值得把自己的教育,职业和未来押注到这一领域?
这些犹豫都是合理的。所有数据科学家都应该用事实说话,而不是仅凭直觉。
因此在下文中,我们将介绍数据科学相关的五种新兴职业对于公司的重要性。此外,我们将说明每个职位的期望值和责任,从而帮助你获得理想的工作。
在此之前,让我们了解一下数据科学工作的前景。
为什么说数据科学职业是有前景的?
数据科学职位将成倍增长
我们生活在数字时代,随着技术的进步,获取、存储和处理数据的能力也将相应提高。
公司需要数据方面的人才。因此,随着对职业技能要求的提高,对数据科学家的需求只会随之增加。
(来源: Indeed.com)
数据科学工作的竞争较小
即使数据科学的在线课程和传统线下课程的数量激增,由于该领域的快速增长,市场需求在未来十年将不太可能饱和。
公司正在努力填满该领域的人才缺口。数据科学职位比传统的工作岗位的招募时间更长。
数据科学类人才的需求在以下行业十分明显:
·休闲与旅游:Airbnb建立了专注数据科学的内部大学。
· 财务:会计师将利用人造智能来减轻审计负担。
· 医学:IBM计划利用Watson AI创建一个跨学科的数据科学网络。
除此之外,许多其他领域的公司都大量需要数据科学相关人才。
数据科学是未来职业安全的最佳选择
机器人有朝一日将取代人类的工作,这已经不再是科幻小说里的场景了,任何人在开始职业生涯时都需要考虑到这一因素。
在接受CNBC采访时,德意志银行的CEO,John Cryan表示,在通过技术简化工作流程时,金融领域的非技术性工作将不可避免地受到影响。
英国卫报最近报道,英国私营部门的四百万个工作岗位在未来十年内可能被机器人所取代。
尽管少数工作不会受到自动化的影响,但数据科学的吸引力在于,数据科学能够直接分析,管理和改变数字后端的工作流程和公司信息。
开始你的数据科学职业生涯
以上提到的三个原因应该会激起你对于该领域的兴趣...
但是数据科学家究竟是做什么的?
什么是数据分析师,什么是数据科学家?
对于那些不喜欢数据科学技术方面的人群,有什么选择呢?
以下五个数据科学相关职业,表明该领域不仅对企业的重要性日益增加,更重要的是,数据科学是21世纪最激动人心的工作领域。
选择适合你的数据科学工作:
有很多职业道路可供选择。为了帮助你找到适合自己的职位,下面是招聘中最常见的五个职位头衔,以及职位的工作描述。
业务分析师 Business Analyst:
这类位需求较大,因为商业智能的概念在数据热潮之前已经存在很长时间了。
因此,他们可能比那些需要更多分析或编程知识的职位更具竞争力。
业务分析师一般不会自己分析数据。相反,他们会为了公司未来业务,将处理好的数据转化为出众的视觉效果。
不管你的职责是什么,如果你有兴趣成为业务分析师,强大的演讲技巧是至关重要的。
数据分析师 Data Analyst (数据预处理):
数据预处理的专家是数据科学项目的支柱。数据准备不是一件容易的事情,在这个阶段出现失误可能导致项目的失败。
数据分析师需要手动地对大量数据进行清洗和处理。这是一个麻烦和困难的过程,需要技术知识,以及对细节的重视。尽管有大量责任,但数据分析师通常被称为入门级职位。
对于已经上过数据科学课程,想实践新技能的人群来说,数据分析师是理想的“培训”,从而在处理其他责任前能够提高他们对该领域的信心。
数据分析师 Data Analyst (建模) /数据模型师 Data Modeller:
尽管名称相似,但是建模方向的数据分析师比数据预处理的数据分析师职责更多。
数据模型师的任务是处理开发系统,从而管理和处理公司的数据库。编程知识是至关重要的。
虽然数据预处理可能不包含在工作描述中,但如果你的数据预处理技能不足时,要注意。因为小型公司可能会合并数据分析师的职位,这意味着作为数据模型师你可能肩负数据预处理的职责。
数据科学家 Data Scientist /高级分析师Advanced Analyst /机器学习从业者 Machine Learning (ML) Practitioner /高级数据科学家 Senior Data Scientist:
这些职位是数据科学的重心。想担任这些职位的必须是全能型人才,必须熟练掌握数据科学项目中各个阶段的技能。
话虽如此,这些职位只适合积极主动的人。如果你想按部就班,朝九晚五,那么这些职位不适合你。
如果你喜欢挑战,有创造力,渴望在工作中进行编程和分析任务,那就立即申请吧!
数据科学经理 Data Science Manager /分析经理 Analytics Manager:
这些职位适合那些想远离技术职位的人群。他们只关注数据科学的表面,重点是客户和团队的总体管理。
管理职位适合那些喜欢与团队以及客户沟通的人群。由于没有不直接接触数据科学的技术方面,对于那些想成为“严肃”数据科学家的人来说,这并不是理想选择。
这是因为管理人员需要处理大量员工和预算问题,从而没有时间参与编程和分析。
然而由于其管理职责,这些职位对于从其他领域转行到数据科学领域的人群是不错的选择。
结语
尽管我们列出了数据科学相关不同职位的要求,但是每个职位的实际工作职责具体因公司而异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26