京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为互联网金融插上腾飞的翅膀
大数据无疑是当前ICT领域最为热门的词汇之一。2015年被认为是大数据应用元年,而2016年的大数据市场无疑将迸发出更多的活力。相比之前概念的热炒,如今的大数据正在渗入越来越多的传统行业,金融大数据、医疗大数据、交通大数据等新应用相继出现。当前,已经没有人怀疑大数据能够带来的大价值,而如何激发这些前所未有的价值则是人们关注和探索的重点。
走过了概念炒作期的大数据,正在与各行各业融合,加速“落地”。在这些行业中,金融无疑是重头戏。相关数据显示,在中国大数据IT应用投资规模前五大行业中,金融位居第三。在互联网金融的潮流下,金融业正在借助大数据加快业务创新的步伐,推进精准营销以及完善风险管理机制。大数据和互联网金融日益紧密的结合,加快了我国普惠金融的实现步伐,助力一个大众受益的新金融时代的到来。
大数据助力金融创新
数据是金融行业的重要属性。形式各异的金融产品和金融服务实际上都是构建在大量数据的基础之上。因此,从根本上看,金融机构本身就是一个大数据公司。也正是这一特性,使得金融行业成为较早开展大数据应用的行业之一。
当前,金融行业正在加速与互联网融合,向新金融业态发展。大数据技术的兴起,为金融行业的业务创新提供了有效途径。从目前金融行业在大数据领域的探索中可以看到,银行是众多金融机构中最主动展开大数据投资的,借助大数据技术,银行可以展开精准营销、运营优化,为业务发展注入新的动力。
据悉,目前中国银行已经展开了大数据技术的应用试点。一方面展开大数据平台的基础建设,将全周期的金融业务数据集成到大数据平台,并通过手机App应用提供历史金融数据查询服务。另一方面则积极推进业务应用,目前,中行已经基于大数据推出了“e 触即发”、“口碑贷”、“中银沃金融”等业务,在为个人客户提供实时产品营销推荐、针对小微企业的客户发掘、信用评级和融资服务等领域取得了成效。
大数据分析是营销决策的有力支撑。金融需要高效营销,互联网金融更是需要精准营销,大数据技术的兴起为精准营销的实施提供了有效途径。业界普遍认为,大数据是推进网络营销到精准营销的“杀手锏”。目前,一些银行基于大数据平台,提取和整合线上线下与用户行为有关的数据,形成用户画像,借助分析模型进行快速计算,实现与前端服务渠道的实时互动,从而实现网银、手机银行、网络金融等多渠道的精准营销。
2015年被称为大数据应用元年。伴随着大数据技术的发展,大数据与金融行业的融合将进一步加剧。易观智库认为,中国金融大数据在现有各类线下金融机构和个人用户中的渗透率正在快速提升,未来仍将处于快速发展阶段,而线上用户的应用正处于市场初期,各类新业务模式正在不断探索。
大数据完善风险管理
除了加速金融业务创新,大数据在金融风险控制上的应用更是得到业界的关注和认可。风险管理和定价是金融的核心。但是目前我国个人征信数据还不够完善,征信体系不健全,在这样的情况下,金融风险控制和定价是困扰业界的一大难题。
“大数据可以让风险控制能力提升。”蚂蚁金服CEO彭蕾在日前召开的第二届世界互联网大会上抛出了这一观点。她认为,随着金融行业以及互联网技术的发展,普惠金融在中国已经迎来了发展的黄金时代。不过,我国互联网金融发展仍然面临着“普”与“惠”平衡的挑战,而移动互联网和大数据是推动普惠金融落地的关键因素。尤其是大数据可以提升普惠金融的风险控制能力,加速普惠金融的发展。
用大数据进行金融风险控制正在成为一股潮流。业界甚至有观点认为,没有比用大数据控制金融风险更“靠谱”的事情了。对于金融机构而言,只要掌握了大数据,就可以对用户进行“画像”,“画像”的结果不仅是精准营销的重要参考,同时也是企业充分了解用户信用情况的依据,这无疑将极大地降低金融机构的风险管控成本。
大数据是对金融行业传统风险管理模式的突破,传统风险管理模式都是因果性分析,而大数据则是相关性分析,相比较而言,大数据支撑下的风险管理将更加准确、全面且具有时效性。“没有大数据支撑的精准投资,行之不远;没有大数据的支撑,难以有效防范互联网金融风险。”中国企业联合会原执行副会长冯并日前在公开场合作出了这一判断。
伴随着“互联网+”战略的推进,我国互联网金融的发展步伐将进一步加速,如何实现金融业务创新和金融风险控制之间的平衡正在成为业界关注的焦点,而大数据技术在实现这种平衡中的作用将日渐凸显,助力互联网金融腾飞。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08