京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么要认识数据的本质
未来没有一家公司,不是数据公司。未来没有一个人,不是数据分析师。大数据时代爆发的喧嚣之后,在大数据下半场,谁参透数据的本质,谁就能破局称王,真正让数据做到从看到用,并将企业真正转化成一个完全将人为决策排除在外的数据公司。
《数据的本质》,一部引领企业与个人破局智能商业时代的落地之作。大数据4大核心本质、智能商业时代核心数字经济引擎搭建之道、大数据变现5大场景、区块链、人工智能、Fintech、新零售……智能商业新趋势一网打尽!既是互联网从业者的案头必备书,也是管理层的决策宝典。
马云如何在管理中用人以及破旋涡?阿里魂彭蕾如何用"脑力、心力、体力"带出金牌团队?沈南鹏如何成为投资巨擘?阿里第一军师曾鸣如何看见未来、锻造终局判断力?数据怪杰韦斯岸如何将Big Data内化为Me Data?……《数据的本质》首度披露数据之王们的数据化思考方式,每一个故事,都将是一段内化数据的历程。
一场以大数据为核心的智能盛宴
时下仿佛大家都在谈人工智能,就像当年人人都在谈大数据一样。大数据时代源自应用所产生的巨量数据,比如微信、淘宝。但是,随后大数据反过来成为应用创新的核心,这个循环无疑为我们带来了一种全新的创新型态,那就是:用数据做好产品,用好产品拿到更多数据。
在不同场合上,阿里巴巴的马云、百度的李彦宏及腾讯的马化腾分别谈过自己对人工智能的看法和观点。这种对话有点儿像金庸小说中的华山论剑。到底是气宗( 大数据)还是剑宗(人工智能)更有战略意义?我认为,两者是相辅相成的。经历了互联网20年的发展,我们已经积累了足够多的数据去驱动一场“智能盛宴”,以大数据为核心的人工智能渐露端倪。
2010年,“数据科学家”这个称谓的发明者帕蒂尔(D.J.Patil)和杰夫·哈默巴赫(Jeff Hammerbacher)认为,一切应该以产品为中心,从数据获取、数据清洗、搭建和管理数据设施、原型开发、产品设计等方面,去实践数据的价值。我在阿里就经历了从“数据产品”到“数据作为产品”的阶段,后者其实才是大数据的真正产物,也是人工智能的源泉。
谁掌握“完美信息”,谁就将拥有
整个世界
刚开始进入数据行业时,我一直秉承着这样一个理念:在“假设数据都是可获取的”基础上,思考问题。随着整个社会数据化程度的进一步加深,以及人与物之间的高度互联,以前很多信息的盲点被快速解开。由不同领域积累下的数据形成的“完美信息”渐露端倪,这其实是一个数据从量变到质变的过程。这一“完美信息”具有无限潜能,足以让人工智能所向披靡,催生各种智能场景,并让其如潮涌至。智能时代,秉承“假设数据都是可获取的”这一思维方式,才可让你比别人更胜一筹,从而做到心中有数。
现实中,我们从数据收集、整合、判断,以至行动、再到反馈的过程并不完美,而形成数据闭环系统的阻力往往是人为因素居多。谷歌无人驾驶汽车项目的伟大之处正是给了我们重要的启发,让我们意识到自动化及智能化所需要的数据闭环系统是如何做到了既封闭又开放,其中的里应外合正是未来的发展趋势。我在阿里就经历了4个不同阶段:数据驱动决策、数据驱动流程、数据驱动产品、数据驱动业务。在此过程中,你会发现,数据驱动的目标越模糊、数据越零散、人的互动环节越多,智能项目开展起来就越吃力。
从数据战略到数据治理,别让数
据成为累赘
如前所述,数据资源的积累是发展数字经济的前提。企业在向往智能时代所带来的机遇的同时,更要为企业的未来目标制定数据战略。企业不仅要关注自己现在有什么数据,更要了解未来会欠缺什么。然后,再去探讨欠缺的部分有多少可以靠自己补充,有多少需要求助他人、与他人合作以实现补充。有人把数据比喻为电能,这个比喻很生动,但与电能不一样的是,数据是可以被重复使用的。所以从战略意义上来说,第二使用权的合规性变得非常微妙。
大数据背后的逻辑是数据积累越多越好,在过去两三年,很多企业都相信有了大量数据资源后,就能对企业的业务产生更大价值。但人们往往很快就会发现,除了技术能力之外,如何妥当地管理、利用这些资源并非易事:安全合规是一方面,降低数据使用的阻力及风险也是困难重重。所以我一直倡议,数据治理不是数据部门的工作,而是公司总体的战略。这意味着,“本性纯善”的大数据也容易变成一个累赘。
数据是一种信仰,“善”用才是本质
2016年,一场围棋大战让人类引以为傲的智力顶配瞬间被AlphaGo践踏得体无完肤。而在我看来,这场大战其实不过是一帮人赢了另一帮人,而且大部分人仅注意到了智“能”,而忽略了它与智“慧”的差别:“能”是能力的表现,而“慧”是心除杂念,将智能用在具有普世价值的地方。同样的科技能力是被善用还是被滥用只有一线之差。
几千年来,人类习惯了生存在信息稀缺的年代,大数据与人工智能则为人们带来了曙光,同时也引发了担忧。暂且撇开我们会不会被机器人侵略这个问题,人类真的已经充分利用了自己的潜能了吗?数据是一种信仰,我们应该善用这个宝藏,为人类创造更美好的世界。
我们过去常说:“数据不仅是企业与企业之争,更是国家与国家之争。”但是在不远的未来,数据驱动的算法将会影响人类生活的方方面面,若想在社会中获得竞争力,我们无可避免地必须成为自己的分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26