
python用reduce和map把字符串转为数字的方法
最近在复习高阶函数的时候,有一道题想了半天解不出来。于是上午搜索资料,看了下别人的解法,发现学习编程,思维真的很重要。下面这篇文章就来给大家介绍了python利用reduce和map把字符串转为数字的思路及方法,有需要的朋友们可以参考借鉴,下面来一起看看吧。
python中reduce和map简介
map(func,seq1[,seq2...]) :将函数func作用于给定序列的每个元素,并用一个列表来提供返回值;如果func为None,func表现为身份函数,返回一个含有每个序列中元素集合的n个元组的列表。
reduce(func,seq[,init]) :func为二元函数,将func作用于seq序列的元素,每次携带一对(先前的结果以及下一个序列的元素),连续的将现有的结果和下一个值作用在获得的随后的结果上,最后减少我们的序列为一个单一的返回值:如果初始值init给定,第一个比较会是init和第一个序列元素而不是序列的头两个元素。
这篇文章主要介绍的是python利用reduce和map把字符串转为数字,下面话不多说,来看看详细的实现方法。
习题:
利用map和reduce编写一个str2float函数,把字符串'123.456'转换成浮点数123.456
解法及思路说明:
from functools import reduce
def str2float(s):
s = s.split('.') #以小数点为分隔符,把字符串分为两部分
def f1(x,y): #函数1,小数点之前的数用这个函数处理
return x * 10 + y
def f2(x,y): #函数2,小数点之后的数用这个函数处理
return x / 10 + y
def str2num(str): #函数3,用于把字符串'123'逐个变为数字
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[str]
return reduce(f1,map(str2num,s[0])) + reduce(f2,list(map(str2num,s[1]))[::-1])/10
#最后一部是这个解法的精髓
#小数点前的数'123',用 x * 10 + y 正常求和就能得出123,小数点之后的数'456'要怎样才能得出0.456呢?
#首先把字符串'456'用list(map(str2num,s[1]))转成一个列表[4,5,6]
#然后用[::-1]切片的方式从后往前取,列表变为[6,5,4]
#然后把[6,5,4]利用reduce函数放到f2函数中计算,( 6 / 10 + 5) / 10 + 4 = 4.56,得出结果4.56
#再除以一个10,得出0.456,到此成功把字符串'456'变成了浮点数0.456
#把前后结果加起来,就得到了最终解,成功把字符串'123.456'变成了浮点数123.456
总结
以上就是这篇文章的全部内容,希望本文的内容对大家学习或使用python能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04