京公网安备 11010802034615号
经营许可证编号:京B2-20210330
5点大数据挖掘要注意 学会整理数据和管理客户流量
互联网+大数据已离不开我们的生活,在企业运作中也是同理。要想让企业快速发展起来,学会利用数据是必备基础之一。本文来源于科技博客 VentureBeat,作者是游戏开发平台GameSalad CEO Stephen Nichols,通过分享自己的企业在数据利用上的经验,提醒众多的创业者不能只凭感觉行走,要用数据说话。
不管是多么小型的创业公司,对于数据挖掘这块都必须要不断扩大、不断深入。拥有越多的数据来源,有更多的数据可以分析,进而得出更准确完美的结论,最终才能更成功地为特定客户群服务。
我们公司在做自己的数据驱动工作时学到的最大教训是——在建立产品之前先努力做好数据和情报的收集分析,并且,从第一天开始就把高度注意力放到用户上。以下是对待数据需要注意的5个要点,或将有助于你从数据中挖掘有价值的信息。
1.先收集用户数据
做数据驱动前,先做好对用户的数据收集。不断挑战自己的假设:用户会是谁?你希望他们是谁?虽然可能先是简单地对网站的访客进行调查,例如询问“是什么促使您来到我们的网站?”但这其中也蕴含着你很有可能忽略的重要信息。
利用有效的工具(如实际用户行为的录像记录)去分析人们从一开始到最终买单的浏览过程是怎么变化的,是什么让他们访问这个页面,而不是其他页面?衡量用户在做什么,并确定哪些关键绩效指标(KPI)需要提高。产品的迭代和用户体验的提升都是让KPI往正确方向前进的因素。
在这里也可以一提很受欢迎的A/B测试(A/B测试是一种新兴的网页优化方法,可以用于增加转化率注册率等网页指标),但我并不依赖于它去做任何决定。它需要消耗大量的流量和耐心去完成统计、验证假设。在大多数情况下,最好选择忽略它,而是专注于KPI以及产品迭代。
2.一开始就从数据出发
在设计产品之初,要考虑用户群体的反馈。通过数据分析工具去分析、设计产品,多维度利用和分析这些数据,可以在以后的改造中节省很多力气。这样一来,初期的产品也可以让你和用户更近,从而观察用户和产品是如何相互影响的,而不是单纯拿一堆调查问题覆盖他们。
3.学会整理数据和管理客户流量
在我们公司,对于不同的功能我们会用不同的供应商,包括数据路径、客户支持和市场营销自动化等。Mixpanel(一家数据跟踪和分析公司)有着我 们的所有原生数据,它监控用户流量,进行留存分析,并建立了转化渠道分析。Segment.io(为移动开发者提供便利的分析数据分发服务的公司)可识别 用户,跟踪用户的活动,和路由数据到合适的地址。内部通讯可触发基于事件的消息以及处理自动化留存信息并参与到营销当中。这让我们可以确定用户的喜好,比 如他们是从哪里登录的,是怎么来到这个网页,以及他们将要去哪些网页。我们还使用了自定义路由系统,让数据保持干净,这对于成千上万的用户产生的大量事件 而言是特别重要的。
4.通过有效的策略以简化流程
我们一早就明白快速迭代的真理:宏大繁杂的设计并不可行。通过快速敏捷的模式,我们不但做到从系统上满足业务的日常需求,还腾出时间和精力去思考新的选择、探索更多的可能替代策略。
我们不断地衡量,检讨,改正,以及重复。按月或季度来计划,有助于提高灵活性。我们每天都不停地关注每个部分、每个细节,去发现我们所知道的和不知道的,一步一步解决那些最困难,最重要的问题,然后迭代产品。
在确立最适合业务发展的用户原型时,使用智能的策略避免陷入寻找原型的怪圈中。找出谁在使用你的产品,这看起来很简单,但它也涉及到查找原生数据以 及找出相关性等问题。这些程序和数据包都存在于R和Physon(数据分析主流编程语言)中,它可以帮助你决定需要哪些以及多少用户原型。
5.赋予员工更多的权限
从“用户的支持”到“用户的成功”的转变看似简单微小,但对员工的态度以及用户的满意度会产生巨大的影响。“支持”意味着一种负担,是你必须做的事 情。而“成功”意味着分享,是你想要做的事情。“让用户成功”是每个员工的职责,因此他们需要被授予权利去代表客户提出建议,被授权的员工也代表着被授权 的用户。
在过去,我们没有工具可以去了解我们的用户行为。现在我们可以看到他们在点击什么,他们是从哪里登录进来的。这样子我们就可以与每一位用户接触,不 管是通过某种渠道还是为了处理个别问题。既然我们知道了谁在访问我们的网站,那么,我们也可以通过他们来接触更广泛的人群。更重要的是,我们可以根据这些 数据继续调整产品、满足用户的需求,而不是只靠单纯的假设。
在往后的时间里,这(数据利用)将会是所有企业的一个基本能力,那些仍沉浸于靠猜测来顺应发展的都将被淘汰
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26