
大数据的关键不是“大”,而是你真的需要它吗
诸如我们听到的、看到的和正在自觉或不自觉地参与的,大数据已成为一项大工程,它无处不在。我们对待它就像在迎接自己的终生伴侣,兴奋之情溢于言表。每个人都在想:“嘿,大数据时代来了,我能从中得到什么好处呢?”从社交媒体、初创公司到北京的中关村,人们都在研究和部署大数据。
但是,正如前面我们提到的,大数据不是无源之水,你需要一个充足的理由来为它打开大门,让它进入你的世界;同时,你还需要为此付出不菲的代价。大多数公司缺乏预算,它们花不了大价钱来部署大数据技术解决方案,也请不起相关团队和大数据工程师。
大数据首先是一项产业,根据一份报告显示,2012年大数据带动了全球近300亿美元的IT支出,预计再过4年这个数字将超过2500亿美元。还有许多新兴国家难以预料的市场空间没有计算在内。要知道,这几乎是一个中等发达国家的全年国内经济总产值了。
那些使用大数据的辉煌案例到处都是,但距离某些特定人群总是如此遥远。比如,脸书的推广人员骄傲地说,他们每天要存储大约100TB的用户数据;美国国家安全局(NSA)每天要处理约24TB的数据。惊人的数字!确实令我们印象深刻。可是处理这些数据所需要的成本是多少呢?根据一项公开资料显示,NSA需要为45天的数据存储服务支付超过百万美元的费用,这个成本还在继续增加。在我几年的走访中,大多数公司的CIO也对我说,他们的预算支付不起大数据部署的成本。
所以,这是昂贵的门槛——公司如果想获得大数据服务,第一件要解决的事情就是提供充足的财务预算。
没钱?对不起,这不是卖白菜,也不是批发廉价商品或请几个经理人那么简单。因此我经常听到人们抱怨:“大数据太贵了!”个人和企业都在仰天叹息,但同时又充满渴望。问题是,你真的需要它吗?
数据存储和处理的成本如此之高,成本变成了阻碍每一个人拥抱大数据的最大障碍,就像其他一切新生事物一样。以至于我们普通人——中小企业需要寻求其他的解决方案,让规模较小的公司和个体不被“大数据”拒之门外。
◆ 方案一:大数据的关键不是“大”。
大数据就一定“大”吗?虽然全球最大的科技公司都需要和PB级规模的数据打交道,它们当之无愧地成为对海量数据处理达到星级服务的用户。然而,我们的研究也表明,另外有95%的公司通常只需要使用0.5TB到40TB的数据,甚至更少。
脸书和NSA的故事并不能拿来作为普及版案例,它们不是常态。事实是,大公司的方案没有必要成为中小公司效仿的版本。在全美有5万多家公司的员工只有20到500人,它们大部分都有解决数据问题的需求,但它们并没有向脸书和NSA看齐,去建立一个成本高昂的数据帝国。
所以你看到,大数据市场最大的需求并不是那些居于世界前500强的大公司,而是排名在500到5万之间的公司。我们为何只关注那些极少数的例外,而忽视了普通的需求者呢?
将自己排除在PB级规模数据需求的用户之外,我们才有可能找到真正的方案。当大数据向我们走来时,我们应尽可能选择一个较小的接口,一样能享受同等的服务和便捷。
◆ 方案二:确定你是否真的需要它。
在向人们普及大数据时我经常在想,如果我们改变了大数据的定义,会发生什么?换一个角度,用更宏观的思维来思考它,你就能够跳出来,站在自我需求的角度去进行思考。
我们不妨这样考虑:“大数据是一种主观状态,它描述的是一个公司(个人)的基础架构(现状)无法满足其对于数据处理的需求时的情形。”
从某种意义上来说,这个判断是“灰色”的,可能没有人们想象的那么灿烂美好。没有需求就不需要大数据。不过它更贴近事实:不是所有人都必须与大数据时代接轨,当你看到它扑面而来时,你要做的第一件事是确定自己是否真的需要它,然后再采取恰当的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19