
大数据营销的潜能有待挖掘
这是数字时代,智能手机,平板电脑,数百个电视频道,成千上万的应用程序,社交媒体和网络购物是我们日常生活的一部分。
数字革命之前,营销人员集中在周末的时间,投放制作精良或有创意的广告。而现在的营销方式已迅速转变为大数据营销,通过分析用户的行为偏好,给用户发送更有针对性的信息。
数据营销趋势
根据最新的EmailCar的研究报告分析,近86%的受访者说,目前他们的企业正在使用或者正计划使用数据营销。此外,近75%已使用数据的营销人员都认为其效果是“非常”或者“极其”有效。另还有83%的企业表示很有可能继续扩大使用数据营销方式在企业整体的营销策略中。
以大数据定位用户
当涉及到数据营销,营销人员必须采集到有大量的用户数据,如姓名,电话号码,或邮寄地址。而其中性价比最高的就是利用数据做电子邮件营销。虽然电子邮件地址并不能简单的构成大数据,但邮件行业中平均花费1元就会有超过40元的投资回报率。
电子邮件营销只是一个利用数据对大规模的用户提供营销的有效方式,还有许多其他的营销方式,如内容营销和搜索引擎的营销策略。随着越来越多的营销人员使用这种线上的营销策略,大数据的营销潜能也越来越大了。
数据的4大来源
1.人口统计
你可能会从用户注册行为或购买行为时收集到基本的数据信息,比如A / S / A(年龄、性别、地址)。这部分数据不会经常改变,人们不会改变他们的名字,性别或地址(当然不排除个别特殊情况)这些基础的数据信息便于细分。2.偏好数据
偏好数据通常是通过相同类型的偏好中心收集的,可能包括关于用户的首选产品,服务,品牌,规模或邮件频率。
3.交易数据
在你的电子商务平台中分析出有商业价值的交易数据,是你在电子邮件营销中可以做的最好的事情之一。将这个数据导入你的ESP(电子邮件服务提供商)可以大大提高你的数据细分,并打开了自动电子邮件营销的新天地。
4.行为数据
你的用户感兴趣的是什么?最近的行为数据是最可靠的指标。这种类型的数据可以从电子邮件收集(打开/点击)或从你的网站(网页浏览)情况中收集。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12