京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助银行提高征信水平和风险监控能力
在智慧科技产业飞速发展的当下,以大数据技术为依托的若干大数据产品在金融领域逐渐开拓出广阔的运用空间。特别是在控制银行风险和降低不良资产领域,目前已经有了较为成熟的实践。事实上,不良贷款的产生除了受近年来国内外经济大环境影响外,还与现有的征信体系和银行传统的征信方式不适应现代经济发展的实际情况有关,而大数据正是解决这一难题的有力工具。
我国征信体系建设起步于1992年,但现有征信体系覆盖范围仍很有限。个人征信系统中反映的仅是个人或企业与银行间发生的信用情况,企业与企业间的商业信用关系以及个人与多方面的信用关系并没有得到系统的记录与反映。
与此同时,银行传统的征信方式也无法满足现代经济发展的实际情况。现代经济发展使企业和个人的经济活动发生了巨大变化,涉及范围更大、内容更加丰富,因此,衡量信用的维度更多样。银行仅仅依靠财务报表已无法了解企业的真实情况,而权威机构的公开信息系统还无法涵盖有关企业及个人社会行为的所有信用信息。这些不足导致现有银行的征信系统对客户了解的信息维度不够,信息真实性不高,信息采集、分类的科学性不强,进而使银行无法准确地对客户的诚信作出判断,对客户经营活动无从掌握,对客户的未来发展无法预测。
大数据技术手段的应用,为现有征信体系建设提供了很好的补充和强化作用。当前一些企业所做的尝试表明,大数据可以帮助银行提高征信水平和风险监控能力。
首先,一站式征信平台可以进行贷前客户甄别。目前,银行查询客户的情况既费时、费力,又增加银行费用,而利用企业的一站式征信平台,则可以最大限度地节省银行的人力、物力及时间,并确保数据有效、及时、准确。
其次,风险量化平台可以助力贷后风险监控。平台基于企业日常经营数据,结合平台数据模型,采用动态、实时的云端数据抓取技术,对企业的发展进行分析和评测,给出风险量化分数,并第一时间发现企业的生产经营异动,在风险触发前3到6个月预警,使银行等金融机构能够及时采取相应措施,防止和减少损失发生。
同时,利用“企业族谱”查询,对不良贷款进行监控。如一些企业通过关联交易转移利润、制造亏损的假象,为不偿还银行贷款寻找理由;或者通过关联交易制造虚假业绩,为继续获得银行贷款提供依据,这些假象通过关联交易查询,都可以很快发现蛛丝马迹,让企业造假暴露原形,可防止银行上当受骗。
值得一提的是,大数据技术将有效解决中小微企业融资难题。银行发展中小微企业客户既是国家的要求,也是银行自身改善客户结构的需要。但是,有融资需求的中小微企业普遍存在资产少、担保不足的问题。运用金电联行的工具,在企业提供反映其真实经营状况的历史数据的基础上,通过大数据挖掘和分析技术,可挖掘出企业真实的经营状况、健康状况、盈利能力及企业历史信用积累情况,真正展现出企业实际经营信息,并给出企业的信用等级和信用额度,从而为银行或相关金融机构提供贷款依据,缓解中小微企业融资难题,挖掘潜在优质客户。
除此之外,还可以提高信用卡发卡质量,合理增信,防止不良客户产生。大数据企业有多项独特的个人外部数据来源和评分系统来协助银行进行信用卡新卡发卡审批、审批额度、增信、交易监控等业务管理环节。
金融的本质是经营风险,如何做好风控尤为重要。特别是在当前经济新常态下,中小企业承受着不同程度的压力,银行风险开始涌现。在此背景下,金融机构如何对已贷款客户进行有效的风险度量,无疑是迫切的现实需求。由此,提前抑制风险就成为银行利用大数据技术所要实现的首要目标。
某股份制银行董事长曾谈到量化风险管理给银行带来的三大收获:“一是至少可以比其他银行跑得快一点儿;二是实现了最大限度的信息对称;三是效率与准确度大幅度提升,摆脱大量人工之后,有利于将贷后风险管理上收总行及分行,大幅提升管理透明度。”而据某商业银行测算,大数据技术能有效降低不良率47%以上。
由于大数据技术在某种程度上相当于给中小微企业加了一套体检设备,这样筛查出来的好企业,银行就敢于放贷,从而很好地解决了融资难的问题。此外,通过大数据技术催生新的金融服务模式,实现了全线上的流程再造。即将传统的人工点对点模式升级为智能、批量的高效模式,可以最大程度地降低成本,助推金融机构转型发展。
特别是,针对以往基层银行客户多、人员少,无法做到实时监控,难以及时发现风险的状况,大数据产品的运用,则可以帮助银行做到风险监控实时化、动态化,从而避免和减少损失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12