
简要讲解Python编程中线程的创建与锁的使用
这篇文章主要介绍了简要讲解Python编程中线程的创建与锁的使用,Python中虽然有GIL的存在,但依然是能够创建多个线程来交替使用的,
创建线程
创建线程的两种方法:
1,直接调用threading.Thread来构造thread对象,Thread的参数如下:
class threading.Thread(group=None, target=None, name=None, args=(), kwargs={})
group为None;
target为线程将要执行的功能函数;
name为线程的名字,也可以在对象构造后调用setName()来设定;
args为tuple类型的参数,可以为多个,如果只有一个也的使用tuple的形式传入,例如(1,);
kwargs为dict类型的参数,也即位命名参数
threading.Thread对象的其他方法:
start(),用来启动线程;
join(), 等待直到线程结束;
isAlive(),获取线程状态
setDeamon(), 设置线程为deamon线程,必须在start()调用前调用,默认为非demon。
注意: python的主线程在没有非deamon线程存在时就会退出。
threading.currentthread() , 用来获得当前的线程;
threading.enumerate() , 用来多的当前存活的所有线程;
运行结果
I am Thread-1.num:0
I am Thread-1.num:1
I am Thread-1.num:2
I am Thread-2.num:0
I am Thread-2.num:1
I am Thread-2.num:2
I am Thread-3.num:0
I am Thread-3.num:1
I am Thread-3.num:2
2,直接从threading.Thread继承,然后重写__init__方法和run方法
#coding:utf-8
import threading
class MyThread(threading.Thread): #继承父类threading.Thread
def __init__(self, num ):
threading.Thread.__init__(self)
self.num = num
#把要执行的代码写到run函数里面 线程在创建后会直接运行run函数
def run(self):
for i in range(self.num):
print 'I am %s.num:%s' % (self.getName(), i)
for i in range(3):
t = MyThread(3)
t.start()
t.join()
运行结果
I am Thread-1.num:0
I am Thread-1.num:1
I am Thread-1.num:2
I am Thread-2.num:0
I am Thread-2.num:1
I am Thread-2.num:2
I am Thread-3.num:0
I am Thread-3.num:1
I am Thread-3.num:2
锁的使用
假设我们有一个公共数据x(也可以叫共享资源,临界资源),然后跑10个线程都去访问这变量并对这个变量进行修改的操作,那么就得到意料之外的结果。
import threading # 导入threading模块
import time # 导入time模块
class mythread(threading.Thread): # 通过继承创建类
def __init__(self,threadname): # 初始化方法
# 调用父类的初始化方法
threading.Thread.__init__(self,name = threadname)
def run(self): # 重载run方法
global x # 使用global表明x为全局变量
for i in range(3):
x = x + 1
time.sleep(2) # 调用sleep函数,让线程休眠5秒
print x
tl = [] # 定义列表
for i in range(10):
t = mythread(str(i)) # 类实例化
tl.append(t) # 将类对象添加到列表中
x=0 # 将x赋值为0
for i in tl:
i.start() # 依次运行线程
运行结果
[root@localhost ~]# python syn.py
30
30
30
30
30
30
30
30
30
30
由于x是全局变量(共享资源),每个线程对x操作后就休眠了
在线程休眠的时候其他线程也都开始执行操作,
最终休眠5秒后x的值最终就被修改为30了
使用互斥锁来保护公共资源。用互斥锁来保证同一时刻只有一个线程访问公共资源,实现简单的同步
互斥锁:threading.Lock
互斥锁方法:acquire() 获取锁 release():释放锁
当有一个线程获的锁之后,这把锁就会进入locke状态(被锁起来了),另外的线程试图获取锁的时候就会变成同步阻塞状态,
当拥有线程锁的的线程调用锁方法 release()之后就会释放锁,那么锁就会变成开锁unlocked状态,之后再从同步阻塞状态的线程中选择一个来获得锁
import threading # 导入threading模块
import time # 导入time模块
class mythread(threading.Thread): # 通过继承创建类
def __init__(self,threadname): # 初始化方法
threading.Thread.__init__(self,name = threadname)
def run(self): # 重载run方法
global x # 使用global表明x为全局变量
lock.acquire() # 调用lock的acquire方法
for i in range(3):
x = x + 1
time.sleep(2) # 调用sleep函数,让线程休眠5秒
print x
lock.release() # 调用lock的release方法
lock = threading.Lock() # 类实例化
tl = [] # 定义列表
for i in range(10):
t = mythread(str(i)) # 类实例化
tl.append(t) # 将类对象添加到列表中
x=0 # 将x赋值为0
for i in tl:
i.start() # 依次运行线程
运行结果:
[root@localhost ~]# python syn.py
3
6
9
12
15
18
21
24
27
30
可重入锁:threading.RLock()
方法和互斥锁一样。
假设一个锁嵌套的情况:有个线程以及获取到锁和共享资源了,但是又需要一把锁来获取另外一个资源,那么只要把代码里面的:
lock = threading.Lock()
修改为:
lock = threading.RLock()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04