京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据整合产业链是大家居时代的必经之路
如今,“大家居”和“大数据”是行业内两大热词,数据已然渗透到了家居行业的业务职能领域,成为重要的生产因素。人们对于数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。
对于家居行业的发展方向,全渠道整合平台是个重要的进程。工匠精神、大数据、住宅精装趋势下的渠道变革、家居产业资源融通与整合等等,都展现出经济全球化下的中国经济已经呈现融合大趋势,打破产业壁垒是行业的必经之路。
大家居时代 企业需提升专业化精神
在大数据时代依旧将目光聚焦在传统制造领域,深圳市致力于“大家居时代的专业化精神”的升级与拓展。在深圳这片全国最具活力、创造力的城市,诞生了最具中国最具竞争力的民营经济群体,除了高新技术、物流业、金融业、文化产业等四大支柱产业,家具、女装、钟表等八大优势传统产业,创造了中国领先的品牌集群及经济效益。但即使如此,中国大家居产业各品类的创新能力、服务水平不足等问题仍然突出,产业呼唤专业精神的觉醒。
1、解决品质问题,必须走标准升级之路。10月10日在深圳市委市政府支持下的“深圳标准”(家具类)的深圳市经济特区技术规范发布,以全面超越国标,比肩欧标的要求推动制造品质提升。
2、解决服务问题,不管大数据对消费者行为定位分析多精准,家具最终要实现一个“完美家”的体验,如果不能解决运输、安装等服务问题,如何提升消费者对于家的精神需求。
3、解决品牌问题,再优秀的产品设计,再精准高效的渠道建设,如果没有相匹配的形象与品牌传播,“大数据”推送的效果有可能适得其反。
产品、服务、形象,只有在遵循大家居时代的专业精神的基础上,不断提升家居企业的整体实力,才能为大数据的发展提供良好的支持,从而在转型中取得品效多赢的局面。
向“一体化解决方案提供者”升级
从电子商务到“互联网+”,再到大数据,加强泛家居最上游房地产业的合作成为中国泛家居产业链重要的环节之一。就城市而言,北京、上海、深圳、重庆、江苏、山东、浙江、河南、河北、安徽已经出台了住宅精装政策,这些城市中深圳、上海新建住宅精装比例超过60%,河南、山东、浙江预计2020年多层及高层精装比例80%以上。另外,三四线城市精装总比逐渐提高,预计2016年底规模提升到40%。全国预计2016年共推出95万套精装房,而这个比例在未来将不断上升。
随着越来越多精装房的出现,房企已经将服务从建筑向设计服务、施工服务、装修主材、固装家具等下游产业链整合,中国家居和家装产业正在经历一个被“跨界打劫”的时代。作为企业,是应该关注大数据抢占用户,还是赶紧向上游集结,避免被蚕食的命运。精装房的快速发展,加速了下游各个品类的合作重组,产业链重组成为必然,企业只有两种应对途经:一是向深度挖,二是向宽度拓展,从而由单品类机极致的体验感受向“一体化解决方案提供者”升级。
家居产业资源融通与整合,从‘互联网+’到“大数据+”,中国家居与家装行业关注的重点更多聚焦在如何“用活大数据”及“整合产业链”上。但是,无论是家居业的消费和环境属性,还是家装业处于泛家居下游的产业地位,中国家居业更需要的是一次回归和蜕变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10