
碎片化、干货、速成…这类流行词正在让你慢慢变傻
生活在这个快捷的时代,很多人都热衷于“快餐式”生活。
于是“碎片化”“干货”“速成”“公开课”等逐渐成为流行热词。
而碎片化学习的最大危害是让人们把“知道”当做“懂得”。
网上有个段子关于这群热衷干货喜欢走捷径的人:
“如果你每天还在看耶鲁公开课,上3W咖啡听创业讲座,知乎果壳关注无数,36氪每日必读,对马云的创业史了如指掌,对张小龙的贪嗔痴如数家珍,喜欢罗振宇胜过乔布斯,逢人便谈互联网思维……那你应该还在每天挤地铁。”
学习本质是获取信息,知识系统全面
在没有一个整体框架和知识系统的基础上进行碎片化学习,都无济于事。
碎片化学习太浅且片面,读的太零碎,就不习惯集中精力阅读。
我们是否经常打开一个网页看个标题就关闭了;看别人的答案扫完第一段就开始去写评论了;知道某本书,看个序言就觉得自己读过了。碎片式阅读慢慢变成自欺欺人,不懂装懂,连自己都骗。
快消知识产品陷阱
就拿商业数据分析这门知识来说,很多人会购买一些书籍,比如叫做《R/Python等某某软件入门到精通》,《大数据某某行业案例》,《人工智能/机器学习》等等。这些书籍是否有一个科学的完整体系?是否包含数据分析前后内外的各项技能?是否这些书纯粹是跟随热点,实为茶余饭后的畅销阅读物?
有些在线学习平台和培训机构,推出一些低价便宜的专题课程,如:百元就能玩转数据分析,机器学习从零进阶,5个小时的课有着完整的知识体系。先不问课程质量如何,这些课程的目的是什么? 无非是以免费吸引眼球,以低价博取青睐,以包装获取芳心。在快速消费的时代将知识拆分,推出各类便宜的手榴弹,一次次轰炸用户的头脑,而这时的你如果被炸到一次是否就开始动心了呢?
碎片化学习的弊端
其实,抛开这些快消付费知识产品,按照自身情况来看,如果没有统计数学基础去学一门软件,你确实会学会如何操作软件,但学完也不会实际解决数据分析问题。
如果你没有实际做过数据挖掘的项目就去学机器学习,学完你也只会领悟到机器学习的概念,而不是精髓。
这就好比,你去学一门刀工技术,学完你会宰杀一头猪,但不知道猪的各个部位应该如何剖解,如何处理。
数据分析正确的学习方法是?
理论从实践中来,又反过来指导实践。所有的规则,都是“经验→思考→结论”的产物。
歌德说过:“要想让别人反复思考的智慧真正成为我们自己的,一定要经过自己再三思考,直至它们在我们个人经验中生根为止。”
这世上唯一的捷径是行动:勤奋地阅读、勤奋地思考、勤奋地实践。
走得太舒服的路,往往都是下坡路,不愿意花时间和金钱去投资,都徘徊在边缘。
你想要的结果,必须自己一步一步走出来。
CDA携手网易云课堂给你这个机会,不仅仅教你完备的知识,还有系统的学习过程和学习方法,更重要的是教会你实际运用。
在还没有完备掌握知识体系的情况下,让我们远离碎片化的谎言,静心学好数据分析。
CDA的完备知识体系
CDA数据分析师云课堂微专业
好课嘉年华,狂欢最后两天。
领取225元入场PASS券,全场通用
微专业一:《数据分析师(Excel)》,主讲:李奇
微专业二:《数据分析师(SQL)》,主讲:李御玺
CDA微专业专场(扫码进入):
CDA数据分析学习路径-体系课程
三条路径,涵盖CDA LEVEL 1+LEVEL 2大纲,三个月掌握完备技能
路径一:非编程方向
路径二:R语言方向
路径三:Python方向
感兴趣的童鞋们可加入CDA课程咨询群,有专业老师为您解答哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04