京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统制造业面临大数据的7种改变方式
中国是个制造业大国,在工业企业信息化、数据化、数据创新领域可以做的事情很多。应用数据的思维古已有之,如同所谓的互联网思维,其实几十年前的营销学原理就有涉猎。关键在于我们能通过适当的技术与工具把数据联结起来,进行分析,进行跨界创新应用。然而问题也跟着来了,制造业对大数据怎样看待和认识的?
制造业并不是信息化发达的行业,从流程的传统粗糙就体现出来。即便有现代化的设备,整体的信息化方案多数也是高科技企业类似某些设备的制造商以及代工厂商。在大数据时代,制造业需要对大数据加强几点认识:
1、制造业需要数字化,这给行业带来精准、先进的工艺、优良的产品,数字化概念可以提高整体水平;
2、制造业首先要认知大数据源头,在进一步数字化之后生产过程中产生的数据均是属于大数据的范畴,从IT角度是具有吸引力和挑战的。
3、从制造业本身讲,国际上的德国“工业4.0”口号代表的数字化制造,物联网为代表的信息化产品占据了制造业的重要平台。被划为传统的就是没有布局的企业,也面临着被淘汰的局面。
4、通过IT技术提升,尤其是大数据技术代表了新的制造产业革命,产业转型的关键技术可以通过IT技术的提升而实现迅速的现实转型。
那么大数据又如何改变制造业?以下是国外制造业正在改变的几种方式:
1、高精度。大数据出现之前,投资好的设备是好方法。而现在使用大数据制造商用程序来优化整个流程,还能分析错误防止错误产生。
2、高产量。许多制造商购买原料制造成品,销售价格高于制造成本。在系统中制造商获得高收益企业经营才有利可图。大数据应用程序能更好的帮助厂商了解整体产量还可以改进运营方式方法,使产品获得更多利润。
3、更好的预测。供应链和需求预测是两个关键工具。可以确定生产量及控制生产进度和仓库中存货和出货。大数据能很好的掌握供应链关系的流程变化,可以选择好的生产条件开工。
4、跟踪业绩。举例如果供应商提供了劣质产品,大数据可以计算可能性,然后决策并确定选择新的合作伙伴维护成本。
5、高追溯性。大数据让制造商的流程透明可追溯。制造商的原材料在生产过程中以及生产阶段有多少损失?给定批次产量多少,目前存储在哪里?运送需要多长时间,一旦需要运送,产品在哪里?大数据可帮制造商跟踪生产和交付的所有这些阶段,并提供对可能效率低的领域的洞察和分析。
6、高自定义。大数据通过获取数据推荐合理的利用原材料方法创建高级定制工作。它其实是可以看做是采取逆向工程,提供出新方案。
7、回报和运营效率。大数据使制造商深入的了解运营真正效率,如新设备或广告策略。
制造商该做些什么达到合理利用?
1、更高的盈利能力。在过去受成本和生产限制等因素的领域,降低成本突破后在每个生产运行中获益。企业很期待这样的机会,来得到更多收入。
2、更大竞争压力。制造商采用大数据策略让竞争对手感到压力,也迫使越来越多的企业开始采取升级的战略改变,未来技术会活跃一切。
3、新角色需求。新的技术带来更多挑战,需要专业的人员实施和管理,因此团队会招募所需求的人才。
结语
工业革命来临,整个领域面临大数据影响,技术也在面临飞跃。未来,如果要继续生产,就要鼓励制造业厂商采用数据采集、存储和分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07