京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计 | 可重复测量数据处理步骤详解
重复测量定义:指对同一观察对象的同一观察指标在不同时间点上进行多次测量(重复次数≥3),称为重复测量设计或重复测量数据。
意义:1)分析处理因素对结果的影响;2)分析观察指标随时间变化的特点。
应用条件:样本是随机的,在同一水平上的观察是独立的。
一、以下为一实例
将手术要求基本相同的15名患者随机分3组,在手术过程中分别采用A,B,C三种麻醉诱导方法,在五个时相测量患者的收缩压,数据记录见表。
这个是属于两因素多水平的重复测量设计,研究对象在不同诱导时相不是随机分配的,而是有先后顺序的,这一点和随机区组设计的方差分析最大的不同点。
表12-17 不同麻醉诱导时相患者的收缩压(mmHg)
二、结合实例在SPSS讲解具体处理步骤
1.在SPSS中建立如下数据文件
第一列为被试编号(可不加此列),第二列为group,第三列开始,每一列代表一个时间点数据。
注:如果只有一组,那group那一列只有1111就行。一样可以统计。
2.分析步骤:打开SPSS...分析...选择一般线性模型...选择重复度量
3.随后将弹出下列对话框
4.由于实例重复测量的因子是诱导时间,共有t0-t4五个级别时间点,所以在级别数内填写5,即5个因子。点击添加......点击定义,弹出新窗口。
备注:被试因子名称是用于指定组内因素的名称,可以更改成诱导时间,,或者其他你想修改的名字;级别数就是组内因素的水平数,这里是5。
5.将新窗口中左侧的t0-t4分别添加至右边因子窗口中,将左边组别添加至右边下面的因子列表中,如下图:
1)点击上述窗口中的模型选项:与二因素的方差分析相似,这里我们默认选择全因子模型,只是这里把因素分为组间和组内两部分。
也可选择“设定”,将左边“因子”选入“群体内模型M”框,“group”选入“群体间模型D”框,“构建项”选择“主效应”。下方的平方和选“类型III”,这是对于平衡数据。如果两组样本量不等,则选择“类型IV”。
2)选项设置:点击“选项”:分别勾选以下几个复选框:描述统计、参数估计和方差齐性检验,单击继续。
5. 结果解读:
1)基本统计描述
下面三个表主要是基本信息输出表明组间和组内因子水平数,样本量和各个分组的基本统计描述。
2)球形检验结果
Manuchly球形度检验结果显示p=0.178>0.05,即满足协方差矩阵球形性检验,不需要对结果进行校正。
注:当球形检验p<0.05时,需要对结果进行检验。SPSS提供了Greenhouse-Geisser和Huynh-Feldt两种矫正方法(下面会介绍到)。
3)组内效应检验和比较
如下图:因子1框中,第一列为球形检验p>0.05时对应的F值=106.558,p<0.001,另外,自由度为第二框因子1*group中第一行对应df那一列数字8和第三个框同理为48,所以结果为F(8,48)=106.558,p<0.001。
以上结果为无矫正结果,因为符合球形检验,无需矫正。
其中,误差方差等同性检验时用来说明分组中的误差和方差五显著性,类似于处于同质水平。
注:如果本实例中球形检验p<0.05,即不符合球性检验时,则需要进行Greenhouse-Geisser或Huynh-Feldt任何一种矫正方法。本例以Greenhouse-Geisser矫正为例。
本次结果应为F(5.43,32.577)=106.558,p<0.001。
4)主体间效应的检验
以下表说明:不同诱导方法之间的收缩压差别有统计学意义。
5)参数估计
以下表格表示针对不同诱导时间和诱导方法下建立的类似于回归分析的参数估计结果。
6)多变量检验结果
最后看看多元分析的结果。多元方差分析避免了球形假设的问题,无论满不满足球形假设都可以用。当不满足球形假定时,一元分析可能一类错误率会增高。
下图是多元的结果:
表格中给出了对组内因素诱导时间和交互效应的检验,在这里分别采用四种不同的算法,有表中可以看出Sig指都小于0.05,说明组内因素诱导时间对患者的血压是有显著性意义的,组间与组内的交互作用对血压的影响也有显著性意义。
注:这四个指标结果相差不大。
6)Post hoc分析
在前面进行模型选择时,如果不选择全因子而选择选定时,可以进行组间两两比较分析,其中有LSD和Bonferroni两种方法供选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23