京公网安备 11010802034615号
经营许可证编号:京B2-20210330
与“数”同行:大数据驱动大学变革
“人类正从IT(Information Technology)时代走向DT(Data Technology)时代”。这场大数据革命强烈冲击着整个高等教育系统,逐渐成为驱动大学变革与创新不可忽视的重要力量。
“大数据”催生新教育形态
从雅典的吕克昂到我国稷下学宫的创立,两千多年来人类高等教育形态大致可分为两种:一种是“经院式”,师生齐聚一堂,以教师为中心诵读经典、传播文化;另一种是“广场式”,大庭广众之下,学者面向普罗大众传播新思想新观念。随着时间推移,人们逐渐认为有必要将学子集中在一个称之为“学校”的地方让他们在一段固定的时间学习,对于同一学习内容也应当采用相同的教学方式,逐渐演变成为现代学校组织建立的两个基本前提及假设。互联网与教育的跨界融合,教学活动从现场瞬间行为变成恒久的数据化行为,衍生出线上线下融合的双重教育服务业态,带来全新特征的育人空间。教育供给方式从传统的“一所学校、一间教室、一位老师、一群学生”的教育服务形态向“一张网络、一个终端、成千上万学生、学校老师任挑选”的教育服务形态迁移。
大数据时代,学生学习不再受时空限制,可根据自己的需要自主决定学习的时间、地点和内容,自主把握学习节奏,自主建构知识体系。
“大数据”驱动管理精准化
数据正在颠覆传统的、线性的、自上而下的精英式决策模式,逐步向非线性的、去中心化的、自下而上的、发挥群体性智慧的决策模式转型。大数据决策模式遵循“万事万物皆量化、数据转变为信息、信息转变为知识、知识涌现出智慧”的逻辑和流程,帮助大学管理者更加清晰地预测大学的未来和发展方向,更加准确地洞悉大学发展态势,从而提高决策的前瞻性和科学性。
大数据穿透了大学与社会间、大学各部门间、大学内师生间的信息壁垒,信息孤岛现象大幅消减,数据共享成为可能,大学管理的协同性、针对性和有效性大幅度提高。例如,大数据打通了人才需求端和供给端,不断提高人才培养的社会适应性及时代引领作用;大数据打通了大学科技创新链与经济产业链,为经济社会转型升级提供精准化服务。
大学运用大数据技术可以对人员信息、教学活动、科研活动、资源配置、运行维护等数据进行可视化的统计与分析,深度挖掘数据中的隐藏信息,查找问题的症结所在,进行“精准的靶向治疗”。借助大数据技术,毕业生就业跟踪评价变得更加广泛和有效,有助于大学评价自身教学质量并及时调整人才培养模式及方案来适应社会需求。
“大数据”推动教育精准化
进入大数据时代,个性化取代标准化,教育更加尊重学生个体特征、学习兴趣和学习者体验。
在传统教育中,教师主要通过碎片化的表格信息和教学活动中的直接感知来了解学生。大数据时代,教师可凭借日常信息采集和数据的挖掘精准了解每位学生的学习基础、需求、风格等信息,发现表象背后深层次问题。
传统教育中的教师主要依靠经验与直觉进行教学决策。大数据时代,通过对教育活动中师生互动行为数据的收集、分析和反馈,教师可以筛选出影响学生表现力提高的因素,及时调整优化教学计划和教学方法,实现教学相长。
另一方面,大数据时代,教育评价从“经验”走向“数据”,更加真实、客观地反映学生成长情况;评价方式从“总结性评估”走向“过程性评价”,更加重视评价的诊断、激励与改进功能;大数据促进评价的主体从“单一”走向“多元”,使得评价更加客观和全面。
“大数据”成为大学的核心资源
在新时期,大数据是国家基础性战略资源,已成为社会生产的新要素。大学每时每刻都在创造具有价值的数据和信息。然而,长期以来我国大学主要是为教育行政主管部门提供数据,扮演的是“数据提供者”,而非“数据使用者”的角色。大学的许多数据还处于孤立、隔离、分散的静默状态,造成了数据能量的巨大浪费。大学应当如何改变?
在推进一流大学建设过程中,我们要树立大数据思维意识,突破传统的经验式、粗放式、模糊化投入—评价方式,建立以大数据为基础的精准化的投入及其评价体系,以大数据引领大学新一轮大变革、大发展。
围绕大学战略定位与发展目标,制定校园大数据建设规划,明确时间表和路线图,营造“人人生产数据、人人共享数据、人人管理数据”的校园文化。同时注意统一数据标准。要建立面向师生学习、工作、生活等主题,覆盖人事信息、教育经费、办学条件等领域,不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。此外就是要实现共享应用。要打破数据壁垒,破解条块分割,建立上下贯通、横向协同的共享交换平台,实现学校人、财、物等信息系统的数据交换和数据共享。
大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立一套良好的运行机制,以确保建设过程中各个环节的正规有序,实现数据无缝对接。大学要发挥人才学术优势,加强大数据应用的科学研究,培养和造就一支会指挥、懂技术、善管理的大数据建设专业队伍。此外,大学还要制定涉及个人隐私、商业秘密和政府保密数据采集使用和保护的相关规定,确保合法合规地获取数据、分析数据和应用数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20